© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Acceleration due to gravity

Example

1. Calculate the period of revolution of neptune around the sun, given that diameter of its orbit is 30 times the diameter of earth's
orbit around the sun, both orbits being assumed to be circular.

D Watch Video Solution

2. A sphere of mass 40 kg is placed at a distance of 0.9 from a sphere of mass 60 kg . If
the two spheres attract eacch other with a force of 0.02 mgf , find the value of gravitational constant.

- Watch Video Solution

3. Assuming the earth to be a uniform sphere of radius $6,380 \mathrm{~km}$ and density $5.5 \mathrm{gcm}^{-3}$, find the value of acceleration due to gravity on its surface. Given that gravitational constant, $G=6.66 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{2}$

- Watch Video Solution

4. Find the value of g at a height of 400 km above the surface of earth. Given that radius of earth, $R=6,400 \mathrm{~km}$ and value of g at the surface of earth $=9.8 \mathrm{~ms}^{-2}$
5. Assuming the earth to be a sphere of uniform mass density, how much would a body weigh 800 km below the surface of the earth, if it weighed 360 N on the surface? Given that radius of the earth, $R=6,400 \mathrm{~km}$.
6. The time period of a satellite of earth is 7
hours. If the separation between the earth and
the satellite is increased to 2 times the previous value, what will be its new time period?

D Watch Video Solution

7. According to Kepler's law of periods, $T^{2}=k r^{3}$ where k is a constant. Compute the constant k for the earth. Given that orbital
radii of the earth and Venus are 1.496×10^{11} m and $1.082 \times 10^{11} \mathrm{~m}$ and their respective periods are 1 year and 0.615 year.

- Watch Video Solution

8. According to Kepler's law of periods,
$T^{2}=k r^{3}$ where k is a constant. Compute the constant k for the earth. Given that orbital radii of the earth and Venus are 1.496×10^{11} m and $1.082 \times 10^{11} \mathrm{~m}$ and their respective periods are 1 year and 0.615 year.

Watch Video Solution

9. Suppose that the gravitational force varies inversely as the nth power of distance. In that situation what will be the time period of a planet in a circular orbit of radius R around the sun?

D Watch Video Solution

10. How fast (in $m^{2} s^{-1}$) is area swept out by
(a) the radius from sun to earth ? (b) the
radius from the earth to moon. Given distance of sun to earth $=1.496 \times 10^{11} \mathrm{~m}$, Distance of earth to moon $=3.845 \times 10^{8} \mathrm{~m}$ and period of revolution of moon $=27 \frac{1}{3}$ days.

- Watch Video Solution

11. The largest and the shortest distance of the
earth from the sun is r_{1} and r_{2}. What will be its distance from the sun when it is at perpendicular to the major axis of the orbit drawn from the sun?
12. Find the gravitational attraction between the two atoms in a hydrogen molecule. Given that $\mathrm{G}=6.67 \times 10^{-} 11 \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, mass of a hydrogen atom $=1.67 \times 10^{-27}$ and distance between the two atoms $=1 \times 10^{-10}$

- Watch Video Solution

13. Approximate the gravitational force exerted on the moon by the earth and the sun
during a solar eclipse. Given that mass of the sun $=2 \times 10^{30} \mathrm{~kg}$, mass of earth $=6 \times 10^{24} \mathrm{~kg}$, mass of the moon $=2.74 \times 10^{22} \mathrm{~kg}$ radius of earth's orbit around the sun $=1.5 \times 10^{11} \mathrm{~m}$ and radius of the moon's orbit around the earth $=3.8 \times 10^{8} \mathrm{~m} \quad$ and $G=$
$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

14. Approximate the gravitational force exerted on the moon by the earth and the sun
during a lunar eclipse. Given that mass of the sun $=2 \times 10^{30} \mathrm{~kg}$, mass of earth $=6 \times 10^{24} \mathrm{~kg}$, mass of the moon $=7.4 \times 10^{22} \mathrm{~kg}$ radius of earth's orbit around the sun $=1.5 \times 10^{11} \mathrm{~m}$ and radius of the moon's orbit around the earth $=3.8 \times 10^{8} \mathrm{~m} \quad$ and $G=$
$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

- Watch Video Solution

15. At some point between the earth and the moon the gravitational force on a space ship
due to the earth and the moon together is
zero. Where is this point? given that the earthmoon distance is $3.845 \times 10^{8} \mathrm{~m}$ and the moon has 1.2% of the mass of earth.

- Watch Video Solution

16. If the mass of the sun is $2 \times 10^{30} \mathrm{~kg}$ the distance of the earth from the sun is $1.5 \times 10^{11} \mathrm{~m}$ and period of revolution of the earth around the sun is 365.3 days, calculate the value of gravitational constant
17. the mass of planet Jupiter is $1.9 \times 10^{27} \mathrm{~kg}$ and that of the sun is $1.99 \times 10^{30} \mathrm{~kg}$. The mean distance of the Jupiter from the sun is $7.8 \times 10^{11} \mathrm{~m}$. Calculate the gravitational force which the sun exerts on Jupiter.

- Watch Video Solution

18. the mass of planet Jupiter is $1.9 \times 10^{27} \mathrm{~kg}$ and that of the sun is $1.99 \times 10^{30} \mathrm{~kg}$. The mean
distance of the Jupiter from the sun is $7.8 \times 10^{11} \mathrm{~m}$. Assuming that Jupiter moves in a circular orbit around the sun calculate the speed of the Jupiter.

D Watch Video Solution

19. the value of g on the surface of earth is $9.8 \frac{\mathrm{~m}}{s^{2}}$. find its value on the surface of the moon. given mass of the earth is equal to
$6 \times 10^{24} \mathrm{~kg}$, mass of the moon $=7.4 \times 10^{22} \mathrm{~kg}$,
$6.4 \times 10^{6} m$, radiusofm $\infty n=1.74 \times \times 10^{\wedge} 6^{\wedge} \mathrm{m}$

D Watch Video Solution

20. The acceleration due to gravity on the planet A is 8 times the acceleration due to gravity on the planet B. A man jumps to a height of 1.5 m on the surface of A . What is the height of jump by the same person on the planet B ?
21. The radius of earth is about 6400 Km and that of mars is about 3200 km The mass of the earth is about 10 times the mass of mars. An object weight 200 N on earth 's surface, then its weight on the surface of mars will be:

D Watch Video Solution

22. Compare the gravitational acceleration of the earth due to attraction of the sun with that due to attraction of the moon. Given that
mass of sun, $M_{s}=1.99 \times 10^{30} \mathrm{~kg}$, mass of moon, $M_{m}=7.35 \times 10^{22} \mathrm{~kg}$, distance of sun
from earth , $r_{e s}=1.49 \times 10^{11} \mathrm{~m}$ and the distance moon from earth $r_{e m}=3.84 \times 10^{8}$ m.

D Watch Video Solution

23. The value of acceleration due to gravity at the surface of the earth is $9.8 m s^{-2}$ and the mean radius is about $6.4 \times 10^{6} \mathrm{~m}$. Assuming that we could get more soil some where,
estimate how thick would an added uniform outer layer on the earth have to have the value of acceleration due to gravity $10 \mathrm{~ms}^{-2}$ exactly?

D Watch Video Solution

24. At what height from the surface of the earth will the value of g be reduced by 36% of present the value at the surface. radius of earth $=6400 \mathrm{~km}$
25. A body weighs 63 N on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth ?

D Watch Video Solution

26. Find the percentage decrease in weight of
a body when taken 16 km below the surface of the earth. Take radius of the earth 6400 km .
27. If the earth where a perfect sphere of radius $6.37 \times 10^{6} \mathrm{~m}$, rotating about its axis with a period of one day $\left(=8.64 \times 10^{4} \mathrm{~s}\right)$, how much would the acceleration due to gravity differ from the poles to the equator?

D Watch Video Solution

28. Calculate the mass and mean density of
the earth from the following data:
$6.6 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, Radius of the earth (R) $=6.37 \times 10^{6} \mathrm{~m}$, Acceleration due to gravity $(\mathrm{g})=$ $9.8 m s^{-2}$

D Watch Video Solution

29. The acceleration due to gravity at the moon's surface is $1.67 \mathrm{~ms}^{-2}$. If the radius of the moon is $1.74 \times 10^{6} \mathrm{~m}$, calculate the mass of the moon.
30. Three particles, each of mass ' m ' are situated at the vertices of an equilateral triangle of side 'a'. the only force acting on the particles are their mutual gravitatinoal foces.

It is desired that each particle move on a circle, while maintaining the original mutual separation 'a'. Find the initial velocity that
should be given to each particle and also the time period of the circular motion.
31. Determine the speed with which they earth
have to rotate on its axis so that a person on
the equator would weigh (3/5)th of as much at present. Take the equitorial radius as 6400 km

D Watch Video Solution

32. What is gravitational force?
33. Which one is greater-the gravitational
force of the earth on 1 kg iron or the force of gravitation applied by 1 kg on earth ?

D Watch Video Solution

34. gravitational force between two bodies is
one newton. if the distance between them is made twice what will be the force?
35. Explain Newton's laws of gravitation and hence deduce the definitin of universal gravitational constant.

D Watch Video Solution

36. Why is G called universal gravitational constant?

- Watch Video Solution

37. what is the nature of motion of an object falling freely under the action of gravity?

- Watch Video Solution

38. Is the value of ' g ' at a given place same for different bodies or it is variable?

D Watch Video Solution
39. explain why a body weighs more at the poles and less at the equator

D Watch Video Solution
40. What will be the weight of a body at the centre of the earth?
(D) Watch Video Solution
41. The mass and weight both of a body becomes zero at the centre of the earth. (T or F)

D Watch Video Solution

42. Why does a body becomes weightless at
the centre of earth ?

D Watch Video Solution
43. Where does body weight more at the surface of the earth or in a mine?

D Watch Video Solution
44. what is the effect of rotation of earth on
value of g ?

- Watch Video Solution

45. At what place on earth the value of g does not change due to its rotational motion?

D Watch Video Solution
46. At what place on earth, the centirpetal force is maximum?

D Watch Video Solution

47. State Keplers' laws of planetary motion.

- Watch Video Solution

48. The moon revolves around the earth and the earth-moon system revolves around the sun. If the earth could be removed suddenly without disturbing the motion of the moon, what would be the subsequent path of the moon?

- Watch Video Solution

49. Show that Kepler's second law follows from
the law of conservation of angular momentum.

D Watch Video Solution

50. According to Newton's second law of motion everybody in this universe attracts every other body. But we do not see bodies on
the surface of the earth moving towards on
another on account of this force of attraction.

Why?

D Watch Video Solution

51. According to Newton's law of gravitation, the apple and the earth experience equal and opposite forces due to gravitation. But it is the apple that falls towards the earth and not vice-versa. Why?

D Watch Video Solution

52. Two spherical balls each of mass 1 kg are place 10 cm apart. Find the gravitational force of attraction between them. Given that universal gravitational constant G= $6.7 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

53. A 50 kg boy stands 1 m away from a 45 kg
girl. Calculate the force of attraction between
them? Given that universal gravitational
constant G=6.7 $\times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

- Watch Video Solution

54. Imagine a spacecraft going from earth to
the moon. HOw does its weight vary as it goes
from the earth to the moon? Will there be any change in the mass?

- Watch Video Solution

55. Among the known types of forces in nature,gravitational force is the weakest.Why
then does it play a diminant role for motin of bodies on the terrestrial,astronomical and cosmological scale?

D Watch Video Solution

56. Do the forces of friction and other contact forces arise due to gravitational attraction? If not, what is the origin of these forces?
57. Cavendish he is said to have been the first person to have weighed the earth. Comment.

- Watch Video Solution

58. On the surface of earth the weight of a body is about $9.8 \mathrm{Nkg}^{-1}$ justify the statement
59. If a planet of a given density were made larger, it's force of attraction for an object on its surface food increase because of planets greater mass, but would decrease because of greater distance from the object to the centre of planet. Which effect does predominate?

- Watch Video Solution

60. Establish the relation: $\mathrm{g}=\left(\frac{4}{3}\right) \pi G R \rho$
where ρ is mean density of the earth, R is the
radius of the earth, g is acceleration due to gravity at the surface of the earth and G is gravitational constant.

D Watch Video Solution

61. Prove that acceleration due to gravity is
independent of mass.

- Watch Video Solution

62. A bullet is dropped from the same height
and the at exactly the same moment, another
bullet is fired horizontally. Discuss the motion of each of the two bullets

- Watch Video Solution

63. If the diameter of earth becomes two times
its present value and its mass remains unchanged, then how the weight of an object on the surface of the earth be affected?
64. A tennis ball jumps higher at hills than at planes. Explain.

D Watch Video Solution

65. Why one can jump higher on the surface of moon than on the earth?
66. If earth suddenly stops rotating about its axis, what would the effect on g ? Would this effect be same at all places?

D Watch Video Solution

67. Choose the correct alternative :-
Acceleration
due
to gravity
\in creases/decreases with increasing altitude.
68. the distance of the planet Jupiter from the
sun is 5.2 times that of the earth. Find the period of the jupiter's revolution around the sun.

- Watch Video Solution

69. The average distance between the sun and

Mars is 1.524 times the average distance between the earth and sun. If the time period of revolution of the earth is 1year find the period of Mars.
70. The radius of the orbit of the earth is $1.5 \times 10^{8} \mathrm{~km}$ and that of the mars is
$2.5 \times 10^{11} \mathrm{~m}$. In how many years, the mars completes its one revolution?

- Watch Video Solution

71. Calculate the gravitational force of attraction between two spherical bodies, each
of mass 2 kg placed at 10 m apart $\left(G=6.67 \times 10^{-11} N m^{2} / k g^{2}\right)$.

D Watch Video Solution

72. A sphere of mass 40 kg is placed at a distance of 0.9 from a sphere of mass 60 kg . If
the two spheres attract eacch other with a force of 0.02 mgf , find the value of gravitational constant.

D Watch Video Solution

73. Approximate the gravitational force exerted on the moon by the earth and the sun during a solar eclipse. Given that mass of the sun $=2 \times 10^{30} \mathrm{~kg}$, mass of earth $=6 \times 10^{24} \mathrm{~kg}$, mass of the moon $=2.74 \times 10^{22} \mathrm{~kg}$ radius of earth's orbit around the sun $=1.5 \times 10^{11} \mathrm{~m}$ and radius of the moon's orbit around the earth $=3.8 \times 10^{8} \mathrm{~m} \quad$ and $\quad \mathrm{G}=$ $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
74. The radius of earth is $6,400 \mathrm{~km}$, mean density of earth is $5,600 \mathrm{~kg} \mathrm{~m}$ and the distance from the earth to the sun is $1.5 \times 10^{8} \mathrm{~km}$. Use the data to calculate the mean force of attraction exerted on the earth by the sun. Assume that the period of revolution of the earth around the sun is 365 days.

- Watch Video Solution

75. The radius of moon is $1.7 \times 10^{6} \mathrm{~m}$ and its mass is $7.35 \times 10^{22} \mathrm{~kg}$. What is the acceleration due to gravity on the surface of moon ? Given $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.

- Watch Video Solution

76. Plans are being made for a colony on the planet mars. Compute the value of acceleration due to gravity, the colonists would experience on the martian surface?

Given, radius of the mars is $3.4 \times 10^{6} \mathrm{~m}$ and its mass is $6.44 \times 10^{23} \mathrm{~kg}$. Take $\mathrm{G}=$ $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

- Watch Video Solution

77. Assume that if the earth were made of lead of relative density $11.3 \mathrm{gm} / \mathrm{cc}$, then what would be the value of acceleration due to gravity on the earth surface ? Take radius of the earth to be 6.37×10^{6} $m \quad$ and
$\mathrm{G}=$
$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

Watch Video Solution

78. On a planet whose size is the same and mass three times as that of our earth, find the amount of work done to lift 5 kg mass vertically upwards through 10 m distance on the planet. The value of g on the surface of earth is $9.8 m s^{-2}$

D
 Watch Video Solution

79. A $75-\mathrm{kg}$ man weighs 735 N on the Earth's
surface. How far above the surface of the Earth
would he have to go to lose 10% of his body weight?

D Watch Video Solution

80. A body weighs 90 kg on the surface of earth how much will it weigh on surface of mars whose mass is $1 / 9$ and radius of $1 / 2$ of that of the earth?
81. An astronaut on the moon measures the acceleration due to gravity to be $1.7 m s^{-2}$. He known that the radius of the moon is about 0.27 times that of the earth. Find the ratio of the mass of the earth to that of the moon, if the value of g on the earth's surface is $9.8 m s^{-2}$

D Watch Video Solution

82. The radii of the planets are respectively R_{1}
and R_{2}, densities are respectively ρ_{1}, and ρ_{2}.
What is the ratio of acceleration due to gravity at their surface?

- Watch Video Solution

83. The Mount Everst is 8848 m above sea level.

Estimate the accelleration due to gravity at this height, given that mean g on the surface of the earth is $9.8 m s^{-2}$ and mean radius of
the earth is $6.37 \times 10^{6} \mathrm{~m}$. Ignore variation in g due to rotation and small departure from spherical shape.

D Watch Video Solution

84. At what height above the surface of the
earth acceleration due to gravity will be 25% of its value on the surface of the earth. given radius of earth $=6400 \mathrm{~km}$

D Watch Video Solution

85. how far away from the surface of the earth
acceleration due to gravity reduces by 64 \% of
its value on the surface. radius of earth $=6400$ km

D Watch Video Solution

86. how far away from the surface of the earth
does the acceleration due to gravity become
4:00 percentage of its value on the surface of earth.radius of earth $=6400 \mathrm{~km}$
87. At what height above the earth's surface the acceleration due to gravity will be $\frac{1}{9}$ th of its value at the earth's surface? Given radius of earth, $R=6400 \mathrm{~km}$

D Watch Video Solution

88. Find the percentage decrease in weight of
a body when taken 16 km below the surface of the earth. Take radius of the earth 6400 km .

- Watch Video Solution

89. at what depth below the surface of earth,
value of g is same as that at a height 64 km above the surface of the earth?

- Watch Video Solution

90. what would be the angular speed of the earth, so that the bodies lying on the equator may appear weightless? Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ radius of earth $=6400 \mathrm{~km}$

- Watch Video Solution

91. At what angular velocity would the earth
have to rotate so that bodies at the equator became weightless? The density of the earth is 5600 $\mathrm{kgmetre}^{-3}$ and the universal gravitational constant is
$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
92. how many times faster than the present speed of the earth have to rotate about its own axis in order that the apparent weight of the bodies at the equator be zero. given radius of the earth $=6.37 \times 10^{6} \mathrm{~m}$. What would be the duration of the day in that case?

D Watch Video Solution

93. Determine the speed with which they earth
have to rotate on its axis so that a person on
the equator would weigh $(3 / 5)$ th of as much at present. Take the equitorial radius as 6400 km

D Watch Video Solution

94. A body of mass 10 kg is taken from the equator to the pole of the earth. Calculate the change in its weight if the radius of the earth is $6.38 \times 10^{6} \mathrm{~m}$, time period of the earth's rotation about its axis is 24 h .

- Watch Video Solution

95. on the surface of earth a body of mass 20 kg is attracted by a body of mass 165 kg with the equal force of 0.25 mgf . The centres of the two masses are 0.3 m apart. Calculate mass of the earth. Radius of earth $=6400 \mathrm{~km}$ and acceleration due to gravity on the surface of the earth $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$

- Watch Video Solution

96. The mean angular velocity of the earth around the sun is 1° in 24 hours. The distance
from the earth to the sun is $1.5 \times 10^{11} \mathrm{~km}$.
Taking G=6.67 $\times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, determine the mass of the sun

- Watch Video Solution

97. If the radius of the earth were increased by
a factor of 2 keeping the mass constant, by what factors would its density have to be changed to keep g same?

- Watch Video Solution

98. The mean distance of the earth from the
sun is $1.496 \times 10^{8} \mathrm{~km}$ and it's siderel

Revolution period 365.3 days. The siderel
Revolution period of the earth's two
neighbouring planets Venus and Mars are respectively 224.7 days and 687.0 days, where a day means a terrestrial day. Find the distance of these planets from the sun. neglect the effect of other planets when considering the motion of the planets around sun.
99. determine the gravitational force of attraction between uniform sphere of mass M and uniform rod of mass m and length L, if the distance of the near end of the rod from the centre of the sphere is r.

D Watch Video Solution

100. A mass is divided into two parts so that
the force of gravitation between them is maximum. Find the ratio of the masses of the two parts.
101. A man can jump 1.5 m high on the earth.
calculate the approximate height he might be
able to jump on moon where mean density is
$\left(\frac{1}{4}\right)$ th and radius is $\left(\frac{1}{3}\right)$ rd than that of Earth

- Watch Video Solution

102. is the radius of earth shrinks by 1.5%, mass remains same then how would the value of acceleration due to gravity change?

D Watch Video Solution

103. If the earth, supposed to be a unifrom
sphere contracts slightly so that its radius
becomes less by $(1 / n)$ than before, show that
the length of the day shortens by $(48 / n)$
hours

Exercise

1. State Keplers' laws of planetary motion.

D Watch Video Solution
2. Derive Newton's law of gravitation from

Kepler's law.

D Watch Video Solution
3. Show that the angular momentum is equal to twice the product of mass and real velocity.

D Watch Video Solution

4. explain how the mass of the sun can be found by studying the motion of the earth around it

D Watch Video Solution

5. State and explain Newton's third Law of motion.

- Watch Video Solution

6. Explain Newton's laws of gravitation and
hence deduce the definitin of universal gravitational constant.

D Watch Video Solution
7. State the universal law of gravitation.

D Watch Video Solution

8. What is meant by acceleration due to gravity?

D Watch Video Solution

9. The acceleration due to gravity depends on
10. Derive an expression for the variation of acceleration due to gravity with depth.

D Watch Video Solution

11. How g and G are related?

- Watch Video Solution

12. show that the acceleration of free fall g at
the surface of earth and gravitational constant are related by the expression
$g=\left(\frac{4}{3}\right) \pi \rho G R$ where ρ is mean density of earth and R is the radius of earth

D Watch Video Solution

13. Starting from the expression of gravitational force between two bodies obtain the expression for the mass of the earth
14. How does value of acceleration due to gravity vary with altitude

- Watch Video Solution

15. How does value of acceleration due to gravity vary with altitude
16. What do you mean by acceleration due to

gravity?

D Watch Video Solution

17. What do you mean by acceleration due to gravity?

D Watch Video Solution

18. Define acceleration due to gravity. What is
the value?
19. Derive an expression for the variation of acceleration due to gravity with depth.

D Watch Video Solution

20. The acceleration due to gravity depends on
21. The value of g at the centre of the earth is

D Watch Video Solution

22. prove that the distance we have to cover into earth below its surface is two times the distance we have to cover above the surface to get the same change in the value of g.

D Watch Video Solution

23. How can you say that the value of acceleration due to gravity at the surface of the earth is more than that at points above and below it.

- Watch Video Solution

24. Calculate the mass and mean density of
the earth from the following data:
Gravitational
constant
(G),=
$6.6 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, Radius of the earth (R
$)=6.37 \times 10^{6} \mathrm{~m}$, Acceleration due to gravity $(\mathrm{g})=$ $9.8 m s^{-2}$

D Watch Video Solution
25. State the universal law of gravitation.

D Watch Video Solution

26. Define acceleration due to gravity. What is
the value?

D Watch Video Solution
27. Define acceleration due to gravity. What is the value?

- Watch Video Solution

28. Define acceleration due to gravity. What is the value?
29. The acceleration due to gravity depends on
(Watch Video Solution
