©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

APPLICATION OF INTEGRALS

Example

1. Find the area of the circle $x^{2}+y^{2}=a^{2}$
using integration.
2. (1) Draw the rough sketch of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

3. Find the area of the region bounded by the curve $y=x^{2}$ and the line $\mathrm{y}=4$.
4. Find the area of the region in the first quadrant enclosed by the x-aixs, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

D Watch Video Solution

5. Find the area of the region BOB'RESB is enclosed by the ellipse and the lines $x=0$ and $\mathrm{x}=\mathrm{ae}$, where $b^{2}=a^{2}\left(1-e^{2}\right)$ and $\mathrm{e}<1$
6. Find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$.

D Watch Video Solution

7. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside the parabola $y^{2}=4 x$.

- Watch Video Solution

8. In the figure given below, AOBA is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $O A=2$ and $O B=6$. Find the area between $\operatorname{arc} A B$ and the chord $A B$

9. Using integration, find the area of the region bounded by the triangle whose vertices are (0,1), (2,2) and (3,1).

D Watch Video Solution

10. Find the area enclosed between the circles
$x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

D Watch Video Solution

11. Consider the parabola $y^{2}=4 a x$
(i) Write the equation of the rectum and obtain the x co-ordinates of the point of intersection of latus rectum and the parabola.
(ii) Find the area of the parabola bounded by the latus rectum.

D Watch Video Solution

12. Find the area of the region bounded by the
line $y=3 x+2$, the x-axis and the ordinates $x=-1$
and $x=1$.

- Watch Video Solution

13. Find the area bounded by the curve $y=\sin$
x between $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$.

D Watch Video Solution

14. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$
divide the area of the square bounded by $x=0$,
$x=4$ and $y=0$ into three equal parts.

- Watch Video Solution

15. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

D Watch Video Solution

Exercise 81

1. Find the area of the region bounded by the
curve $y_{2}=x$ and the lines $\mathrm{x}=1, \mathrm{x}=4$ and the
x-axis in the first quadrant.

- Watch Video Solution

2. Find the area of the region bounded by $y_{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

3. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the
first quadrant.

- Watch Video Solution

4. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.
(Watch Video Solution
5. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
6. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.

- Watch Video Solution

7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

D Watch Video Solution
8. The area between $x=y^{2}$ and $\mathrm{x}=4$ is divided into two equal parts by the line $x=a$ find the value of a.

- Watch Video Solution

9. Find the area of the region bounded between the parabola $x^{2}=y$ and the curve $y=|x|$.
10. Find the area bounded by the curve
$x^{2}=4 y$ and the line $x=4 y-2$.

- Watch Video Solution

11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution

12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

13. Area of the region bounded by the curve $y^{2}=4 x, \mathrm{y}$-axis and the line $\mathrm{y}=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

D Watch Video Solution

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior of the parabola $x^{2}=4 y$.

- Watch Video Solution

2. Find the area bounded by the curves
$(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

- Watch Video Solution

3. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $\mathrm{x}=3$.

- Watch Video Solution

4. Using integration find the area of region
bounded by the triangle whose vertices are $(-1,0),(1,3)$ and (3,2).

- Watch Video Solution

5. Using integration, find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $\mathrm{x}=4$.

- Watch Video Solution

6. Smaller area enclosed by the circle
$x^{2}+y^{2}=4$ and the line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer: B

D Watch Video Solution

7. Area lying between the curves $y^{2}=4 x$ and

$$
y=2 x \text { is }
$$

A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

(Watch Video Solution

Miscellaneous Exercise

1. Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x -axis
(ii) $y=x^{4}, x=1, x=5$ and x -axis.

D Watch Video Solution

2. Find the area between the curves $y=x$ and
$y=x^{2}$.

D Watch Video Solution

3. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, \mathrm{x}=0, \mathrm{y}=1$
and $\mathrm{y}=4$.

- Watch Video Solution

4. Sketch the graph of $y=|x+3|$ and
evaluate $\int_{-6}^{0}|x+3| d x$.

- Watch Video Solution

5. Find the area bounded by the curve $y=\sin x$
between $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$.
6. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$.

D Watch Video Solution

7. Find the area enclosed by the parbola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

- Watch Video Solution

8. Find the area of the smaller region bounded
by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

- Watch Video Solution

9. Find the area of the smaller region bounded
by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$.

D Watch Video Solution

10. Find the area of the region enclosed by the parabola $x^{2}=y$ and the line $y=x+2$ and the x-axis.

D Watch Video Solution

11. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.
12. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

- Watch Video Solution

13. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

D Watch Video Solution

14. Using the method of integration find the area of the region bounded by lines :
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$

- Watch Video Solution

15. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

D Watch Video Solution
16. The area bounded by the curve $y=x|x|$, x -
axis and the ordinates $x=-1$ and $x=1$ is given
by
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

D Watch Video Solution
17. The area bounded by the curve $y=x^{3}, \mathrm{x}$ axis and the ordinates: $\mathrm{x}=-1$ and $\mathrm{x}=1$ is given by
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

18. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is

$$
\begin{aligned}
& \text { A. } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer: C
19. The are a bounded by the y-axis, $y=\cos x$ and $\mathrm{y} \sin \mathrm{x}$ when $0 \leq x \leq \frac{\pi}{2}$ is
A. $2(\sqrt{2-1})$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

