©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Elasticity

Example

1. A wire increases by 10^{-3} of its length when a stress of $10^{8} \mathrm{Nm}^{-2}$ is applied on it what is
the Young's modulus of the material of the wire?

D Watch Video Solution

2. Find the bulk modulus of water from the
following data : Initial volume = 500.0 litre, pressure increase-100.0 atm, final volume-497.5
litre.
3. A cube of aluminium of each side 4 cm is
subjected to a tangential (shearing) force. The top face of the cube is sheared through 0.012 cm with respect to the bottom Find shearing strain Given $\nu=2.08 \times 10^{11}$ dyne cm^{2}

- Watch Video Solution

4. A cube of aluminium of each side 4 cm is subjected to a tangential (shearing) force. The top face of the cube is sheared through 0.012
cm with respect to the bottom Find shearing stress and shearing force. Given $\nu=2.08 \times 10^{11}$ dyne cm^{2}

D Watch Video Solution

5. A steel wire of length 3.6 m and cross section $2.5 \times 10^{-5} \mathrm{~m}^{2}$ stretches by the same amount as a copper wire of length 2.4 m and cross-section $3.2 \times 10^{3} \mathrm{~m}^{2}$ under a given load.

What is the ratio of the Young's modulus of steel to that of copper?
6. If a compressive force of $3.0 \times 10^{4} \mathrm{~N}$ is exerted on the end of a 20 cm long bone of cross-sectional area $3.6 \mathrm{~cm}^{2}$. will the bone break? Given, compressive strength of bone = $7.7 \times 10^{8} \mathrm{Nm}^{2}$ and Young's modulus of bone $1.5 \times 10^{10} \mathrm{Nm}^{2}$

- Watch Video Solution

7. If a compressive force of $3.0 \times 10^{4} \mathrm{~N}$ is exerted on the end of a 20 cm long bone of cross-sectional area $3.6 \mathrm{~cm}^{2}$. if the bone do not break, by how much does it shorten ? Given, compressive strength of bone = $7.7 \times 10^{8} \mathrm{Nm}^{2}$ and Young's modulus of bone $1.5 \times 10^{10} \mathrm{Nm}^{2}$
8. A hollow cylindrical column of steel support
a load of $16,000 \mathrm{~kg}$. The inner and outer radii
of the column are 40 cm and 50 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of the column. Given that Young's modulus of steel $=2.0 \times 10^{41} \mathrm{~Pa}$.
9. Find the elongation of the steel and brass
wire in the Fig. Unloaded length of steel wire-
1.5 m , unloaded length of brass wires 1 m , diameter of each wire 0.3 cm . Young's modulus for steel- $20 x 10^{10} \mathrm{~Pa}$ and that for brass=
$90 x 10^{10} \mathrm{~Pa}$

D Watch Video Solution
10. A mass of 5.0 kg is hung from a copper wire of 5 mm diameter and 2 m in length. Calculate the extension produced. What should be the minimum. diameter of the wire, so that its elastic limit is not exceeded? Elastic limit for copper $=1.5 x 10^{9} d y \neq c m^{-2}$ and Y for copper$1.1 \times 10^{\wedge} 12$ dyne $\mathrm{cm}^{\wedge} 2$.

- Watch Video Solution

11. A 45 kg traffic light is suspended with two
steel wires of equal lengths and radii 0.5 cm . if
the wires make an angle of 15° with the horizontal, what is the fractional increase in their length due to the weight of the light? given youngs modulus of Steel = $2 \times 10^{11} \mathrm{Nm}^{-2}$

- Watch Video Solution

12. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200

N to the lower end. The weight stretches the
wire by 1 mm . Find the elastic energy stored in the wire.

D Watch Video Solution

13. If S is stress and Y is Young's modulus of material of a wire, find the energy stored in
the wire per unit volume in terms of S and Y.

D Watch Video Solution
14. By how much the pressure on one litre of water be changed to compress it by 0.1% ?

Given that bulk modulus of the water $2.2 \times 10^{9} \mathrm{~Pa}$.

- Watch Video Solution

15. The pressure of a medium is changed from
$1.01 \times 10^{5} \mathrm{~Pa}$ to $1.165 \times 10^{5} \mathrm{~Pa}$ and change in volume is 10% keeping temperature constant.

Find the bulk modulus of the medium.
16. Two metal plates are held together by two rivets width radii of 0.2 cm . If the maximum shear stress a single rivet can withstand is $5 \times 10^{8} \mathrm{Nm}^{2}$, how much force must be applied parallel to the plates to shear off both the rivets?
17. A square lead slab of side 50 cm and
thickness 50 cm is subjected to a shearing
force (on its narrow face) of magnitude $9.0 \times 10^{4} N$. The lower edge is riveted to the
floor. How much is the upper edge displaced, if the shear modulus of lead is $5.6 \times 10^{9} \mathrm{~Pa}$?

D Watch Video Solution

18. A stone of 0.5 kg mass is attached to one end of a 0.8 m long aluminium wire of 0.7 mm
diameter and suspended vertically. The stone
is now rotated in a horizontal plane at a rate
such that the wire makes an angle of 85° with the vertical . find the increase in the length of the wire . The Young's modulus of aluminium = $7 \times 10^{10} \mathrm{Nm}^{-2}, \sin 85^{\circ}=0.9962, \cos 85^{\circ}=$ 0.0872

D Watch Video Solution

19. A load of 31.4 kg is suspended from a wire of radius $10^{-3} \mathrm{~m}$ and density $9 \times 10^{3} \mathrm{kgm}^{-3}$,

Calculate the change in temperature of the wire, if 75% of the work done is converted into heat. Given that Young's modulus and heat. capacity of the material of the wire are $9.8 \times 10^{10} \mathrm{Nm}^{-2} \quad$ and $\quad 490 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ respectively.

D Watch Video Solution
20. What is deforming force?
21. which is a property of a body that opposes
its deformation?

- Watch Video Solution

22. under what condition, the restoring forces
are equal and opposite to the external deforming force?

- Watch Video Solution

23. Which of the two forces deforming or restoring is responsible for elastic behaviour of a substance?

- Watch Video Solution

24. State Hooke's law.

D Watch Video Solution
25. what is the limitation of hooke's law?

- Watch Video Solution

26. define stress and give its SI unit

- Watch Video Solution

27. what are the factors on which modulus of elasticity of a material depends?

D Watch Video Solution
28. Why do we prefer steel to manufacture a spring?

D Watch Video Solution
29. In stretching a wire, work has to be performed. Why?
(D) Watch Video Solution
30. When a wire is stretched, work has to be done. What happens to the work done during the stretching of the wire?

D Watch Video Solution

31. Which of the three elastic moduli possible
in all the three states of matter?

D Watch Video Solution
32. A hard wire is broken by bending it repeatedly in opposite direction. Why?

D Watch Video Solution

33. what is meant by elastic fatigue?

- Watch Video Solution

34. why any metallic part of a machinery is never subjected to a stress beyond the elastic
limit of the material?

- Watch Video Solution

35. What is an elastomer?

D Watch Video Solution
36. Why are electric poles given hollow structure?

D Watch Video Solution
37. Name factors which affect the property of elasticity of a solid.

D Watch Video Solution
38. Distinguish between elasticity and plasticity.

- Watch Video Solution

39. Elasticity has different meaning in physics and in our daily life. Comment.

D Watch Video Solution
40. What is the cause of elasticity?

D Watch Video Solution

41. represent graphically the variation of extension with load in an elastic body. On the
graph, mark: Hooke's law region

D Watch Video Solution

42. represent graphically the variation of extension with load in an elastic body. On the graph, mark: Elastic limit

D Watch Video Solution

43. represent graphically the variation of extension with load in an elastic body. On the
graph, mark: Yield point

D Watch Video Solution

44. represent graphically the variation of extension with load in an elastic body. On the graph, mark: breaking point

D Watch Video Solution

45. Draw a schematic of a graph of the applied
force versus resulting elongation of a metallic
wire. Show the elastic limit on this graph.

What feature of this graph is related to the
value of Young's modulus of material of wire?

D Watch Video Solution

46. The stress-strain graph for a metal wire
shown in the Fig. Upto the point E, the wire returns to its original state O along the curve

EPO, when it is gradually unloaded. The point B corresponds to the fracture of the wire. Upto what point on the curve is Hooke's law
obeyed? (This point is sometimes called

'proportional limit').

- Watch Video Solution

47. The stress-strain graph for a metal wire
shown in the Fig. Upto the point E, the wire
returns to its original state O along the curve

EPO, when it is gradually unloaded. The point B corresponds to the fracture of the wire. Which point on the curve corresponds to 'elastic limit' or 'yield point of the wire?

D Watch Video Solution
48. The stress-strain graph for a metal wire shown in the Fig. Upto the point E , the wire returns to its original state O along the curve

EPO, when it is gradually unloaded. The point B corresponds to the fracture of the wire. Indicate the elastic and plastic regions of the stress-strain graph.

Watch Video Solution

49. The stress-strain graph for a metal wire shown in the Fig. Upto the point E, the wire returns to its original state O along the curve

EPO, when it is gradually unloaded. The point B corresponds to the fracture of the wire. Describe what happens, when the wire is loaded up to a stress corres-ponding to the point A on the graph and then unloaded gradually. In particular, explain the dotted

curve.

D Watch Video Solution

50. The stress-strain graph for a metal wire shown in the Fig. Upto the point E, the wire returns to its original state O along the curve

EPO, when it is gradually unloaded. The point B corresponds to the fracture of the wire. Indicate the elastic and plastic regions of the stress-strain graph.

- Watch Video Solution

51. The stress versus strain graphs for wires of two materials A and B are as shown in Fig.

Which material is more ductile ?

52. The stress versus strain graphs for wires of

 two materials A and B are as shown in Fig.Which material is more brittle?

D Watch Video Solution
53. Why do we prefer steel to manufacture a spring?

D Watch Video Solution

54. The length of a wire increases by 8 mm .

Then a weight of 3 kg is hung. if all conditions are the same, what will be the increase in its
length when diameter is doubled?
55. A wire stretches by a certain amount under a load. If the load and radius are both increased to four times, find the stretch caused in the wire.

D Watch Video Solution

56. Two wires of different materials are suspended from a rigid support. They have same length and diameter and carry the sameload at the free ends. Will extension, strain and stress be different?
57. Steel is more elastic than rubber. Explain why?

D Watch Video Solution

58. The length of a metallic wire is L_{1} : when tension on the wie is T_{1}, and length is L_{2}, when the tension in the wire is T_{2}, Find original length of the wire.

Watch Video Solution

59. An elastic wire is cut to half its original length. How would it affect the maximum load that the wire can support?

- Watch Video Solution

60. The breaking force for a wire is F. what will be the breaking force for two parallel wires of the same size?
61. The breaking force for a wire is F, what will be the breaking force for a single wire of double the thickness?

D Watch Video Solution

62. A cable is replaced by another of the same length and material but of twice diameter.

How does this affect elongation under a given

load?

- Watch Video Solution

63. A cable is replaced by another of the same length and material of twice diameter. How many times will be the maximum load supported by the latter as compared to the former?

D Watch Video Solution

64. Why do spring balances show wrong readings after they have been used for a long
time?

D Watch Video Solution

65. Why bridges are declared unsafe after long
use?

D Watch Video Solution

66. Read the following two statements below
carefully and state, with reasons, if it is true or
false. The Young's modulus of rubber is greater than that of steel,

D Watch Video Solution

67. Read the following two statements below carefully and state, with reasons, if it is true or false. The stretching of a coil is determined by its shear modulus.
68. read the statement below carefully and state with reasons if it is true or false. When a material is under tensile stress the restoring
forces are caused by Inter atomic attraction while under compressional stress the restoring forces are due to interatomic repulsion.

D Watch Video Solution

69. Graphite consists of plains of carbon atoms. sach carbon atoms in the plains are held by very weak forces. what kind of elastic properties do you expect from graphite?

- Watch Video Solution

70. Why a solid is ductile or brittle?

D Watch Video Solution

71. Find stress, strain and Young's modulus of elasticity in the case of a wire 1.5 m long and $1 \mathrm{~mm}^{2}$ in cross-section, if it increases by 1.55 mm in length, when a weight of 10 kg is suspended from it.

D Watch Video Solution

72. A structural steel rod has a radius of 10 mm and a length of 1.0 m . A 100 kN force stretches it along its length. Calculate stress.

Young's modulus of structural steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$

D Watch Video Solution

73. A structural steel rod has a radius of 10 mm and a length of 1.0 m . A 100 kN force stretches it along its length. Calculate elongation. Young's modulus of structural steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$

D Watch Video Solution

74. A structural steel rod has a radius of 10 mm and a length of 1.0 m . A 100 kN force stretches it along its length. Calculate strain on the rod. Young's modulus of structural steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$

- Watch Video Solution

75. What force is required to stretch a copper wire $1 \mathrm{~cm}^{2}$ in cross-section to double its length? Y for copper is 1.26×10^{12} dyne. cm
76. Determine the force required to double the length of a steel wire of area of cross section $5 \times 10^{-5} \mathrm{~m}^{2}$ Young's modulus of steel$2 \times 10^{11} \mathrm{Nm}^{-2}$

D Watch Video Solution

77. A load of 2 kg produces an extension of 1 mm in a wire 3 mm in length and 1 mm in
diameter Calculate the Young's modulus of the wire

- Watch Video Solution

78. Calculate the percentage increase in length of a wire of diameter 2 mm stretched by force of 1 kgf . Young's modulus of the material of wire $15 \times 10^{10} \mathrm{Nm}^{-2}$
79. Find the maximum length of the steel wire
that can hang without breaking. Given that breaking stress for steel $7.9 x 10^{11} \mathrm{Nm}^{-2}$ and density of steel- $7.9 \times 10^{3} \mathrm{kgm}^{-3}$

- Watch Video Solution

80. A silica glass rod has a diameter of 1 cm
and is 10 cm long. Estimate the largest mass
that can be hung from it without breaking it.
Given that Young's modulus of silica -6.5
and break \in gstressf or silica -
$5.0 \times x 10^{\wedge} 7 \mathrm{Nm}^{-2}$

- Watch Video Solution

81. A steel wire of length 5.0 m and crosssection $3.0 \times 10^{-5} \mathrm{~m}^{2}$ stretches by the same amount as a copper wire of length 3.0 m and cross-section $4.0 \times 10^{-5} \mathrm{~m}^{2}$ under a given
load. What is the ratio of Young's modulus of steel to that of copper?
82. A mass of 5.0 kg is hung from a copper wire of 5 mm diameter and 2 m in length. Calculate the extension produced. What should be the minimum. diameter of the wire, so that its elastic limit is not exceeded? Elastic limit for copper $=1.5 x 10^{9} d y \neq \mathrm{cm}^{-2}$ and Y for copper$1.1 \times 10^{\wedge} 12$ dyne $\mathrm{cm}^{\wedge} 2$.
83. The average depth of Indian ocean is 3 km .

Find the fractional compression of water at the bottom of the ocean, given that bulk modulus of water id $2.2 \times 10^{9} \mathrm{Nm}^{-2}$.

- Watch Video Solution

84. A solid ball 3 cm in diameter is submerged
in a lake to a depth, where the pressure is
$10^{4} \mathrm{~kg} \mathrm{fm}^{-2}$ Find the change in volume of the
ball, if bulk modulus of the material of the ball is $10^{6} \mathrm{Nm}^{-2}$

D Watch Video Solution

85. When a metallic cube is subjected to a stress of $6 \times 10^{9} \mathrm{Nm}^{-2}$, each side of the cube gets shortened by 1%. Find volumetric strain and bulk modulus of the metal.
86. A solid ball 300 cm in diameter is submerged in a lake a such a depth that the pressure exerted by water is $1.0 \mathrm{kgfcm}^{-2}$. Find the change in volume of the ball at this depth k for material of the ball = $1.0 \times 10^{13} d y \neq c m^{-2}$

D Watch Video Solution

87. A sphere contracts to 0.01% volume, when
taken to the bottom of sea 1 km deep. Find the
bulk modulus of the material of the sphere.
Density of sea water $=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

D Watch Video Solution

88. If the normal density of sea water is
$1.00 \mathrm{~g} / \mathrm{cm}^{3}$, what will be its density at a depth
of 3 km ? Given compressibility of water $=$ 5×10^{-5} per atmosphere. 1 atmospheric pressure $=10^{6} d y \neq / \mathrm{cm}^{2}, \mathrm{~g}=980 \mathrm{~cm} / \mathrm{s}^{2}$.

- Watch Video Solution

89. What is the density of lead under a pressure of $2 \times 10^{8} \mathrm{Nm}^{-2}$, if the bulk modulus of lead is $8 \times 10^{9} \mathrm{Nm}^{-2}$ and normal density of lead is $11.4 \mathrm{gcm}^{-3}$?

D Watch Video Solution

90. A metallic cube whose each side is 10 cm is
subjected to a shearing force of 100 kgf . The top face is displaced through 0.25 cm with respect to the bottom ? Calculate the shearing stress, strain and shear modulus.

- Watch Video Solution

91. An Indian rubber cube of side 7 cm has one
side fixed, while a tangential force equal to the
weight of 200 kilogram is applied to the opposite face. Find the shearing strain produced and distance through which th strained side moves. Modulus of rigidity for rubber is $2 \times 10^{7} d y \neq \mathrm{cm}^{-2}$
92. The Young's modulus for Steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$. If the interatomic spacing for the metal is $2.8 \stackrel{\circ}{A}$, find the increase in the interatomic spacing for a force of $10^{9} \mathrm{Nm}^{-2}$

- Watch Video Solution

93. A stress of $10^{6} \mathrm{~N} / \mathrm{m}^{2}$ is required for breaking a material. If the density of the material is $3 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$, then what should
be the minimum length of the wire made of
the same material so that it breaks by its own
weight $\left(g=10 m / s^{2}\right)$

D Watch Video Solution

94. An Indian rubber cord 10 m long is suspended vertically How much does it stretch under its own weight Density of rubber= $1.5 \times 10^{3} \mathrm{kgm}^{-3}$ and Young's modulus of rubber $-5 \times 10^{8} \mathrm{Nm}^{-2}$
95. A mass of 100 g is attached to the end of a rubber string 49 cm long and of crosssectional area $20 \mathrm{~mm}^{2}$ When the mass is whirled round at a constant angular speed of 40 rps , it moves along a circular path of radius 51 cm . Find young's modulus of rubber.

D Watch Video Solution

96. A rubber cord catapult has a cross sectional area $1 \mathrm{~mm}^{2}$ and total unstretched length of 10 cm . It is stretched to 12 cm and
then released to project a missile of mass 5 g .

Find the velocity of projection of missile and tension in the cord. Young's modulus = $5 \times 10^{8} \mathrm{Nm}^{-2}$

D Watch Video Solution

97. Two parallel steel wires A and B are fixed to
rigid support at the upper ends and subjected to the same load at the lower ends The
lengths of the wires are in the ratio $4: 5$ and their radii are in the ratio $4: 3$. The increase in
the length of the wire A is 1 mm . Calculate the increase in the length of the wire B.

D Watch Video Solution

98. A steel wire and copper wire of the same diameter and of length 1 m and 2 m respectively are connected end to end and a force is applied. The increase in length of the combination is 0.01 m . Calculate the elongation produced in the individual wires. Given that Y
of copper is $12 \times 10^{\wedge}(10) \mathrm{Nm}^{\wedge}(2)$ and that of steel is $20 \times 10^{\wedge}(10) \mathrm{N} \mathrm{m}^{\wedge}(-2)$.

D Watch Video Solution

99. A composite wire of uniform diameter 3 mm consists of a copper wire of length 2.2 m and a steel wire of length 1.6 m stretches under a load by 0.7 mm Calculate the load, given that the Young's modulus for copper in 1.1×10^{11} Pa and that for steel is $20 \times 10^{11} \mathrm{~Pa}$.
100. A wire loaded by a weight of density
$7.8 \mathrm{gcm}^{-3}$ is found to be of length 95 cm . On immersing the weight in water, the length decreased by 0.19 cm . Find the original length of the wire.

D Watch Video Solution

101. A light rod of length $2 m$ is suspended
from the ceiling horizontally by means of two vertical wires of equal length tied to its ends.

One of the wire is made of steel and is of cross section $0.1 \mathrm{~cm}^{2}$ and other is of brass of cross
section $0.2 \mathrm{~cm}^{2}$ Find out the position along the rod at which a weight may be hung to produce equal stresses in both the wires.

D Watch Video Solution

102. A light rod of length 2 m is suspended from the ceiling horizontally by means of two vertical wires of equal length tied to its ends.

One of the wire is made of steel and is of cross
section $10^{-3} \mathrm{~m}^{2}$ and other is of brass of cross
section $2 \times 10^{-2} m^{2}$ Find out the position
along the rod at which a weight may be hung to produce equal stresses in both the wires.

D Watch Video Solution

Exercise

1. Discuss stress-strain graph.

D Watch Video Solution

2. Define stress and strain. Also describe briefly the types of stress and strain.

D Watch Video Solution

3. Give SI unit of Young's modulus of elasticity.

D Watch Video Solution

4. Define modulus of rigidity. Give its units and dimensions.

- Watch Video Solution

5. Steel is more elastic than rubber. Explain why?

- Watch Video Solution

6. Steel is more elastic than rubber. Explain why?

- Watch Video Solution

7. Hollow shafts are preferred to solid shafts for transmitting torque. Explain.

D Watch Video Solution

8. What are ductile materials?

D Watch Video Solution

9. Why do spring balances show wrong readings after they have been used for a long time?
10. Define potential enrgy of a body .Find an expression for the potential energy of a stretched spring.

- Watch Video Solution

11. Define Young's modulus of elasticitiy. normal stress and longitudinal strain. Give unit of each of them. Derive an expression for
the elastic potential energy of a wire, when stretched.

D Watch Video Solution

12. Draw stress-strain curve for aa loaded steel
wire and hence define te terms permanent set,
elastic limit, yield point and tensile strength.

D Watch Video Solution
13. Define Young's modulus of elasticitiy. normal stress and longitudinal strain. Give unit of each of them. Derive an expression for the elastic potential energy of a wire, when stretched.

D Watch Video Solution

14. What is elastic after effect and elastic fatigue?
15. Two rods one is hollow and other is solid of
same length and made of same material
having same modulus of rigidity. Prove that hollow rod is stronger than solid rod.

- Watch Video Solution

