© 'doubtnut

PHYSICS

BOOKS - MODERN PUBLICATION

Force

Exercise

1. An elevator weighs 4000 kg When the
upward tension in the supporting cable is

48000 N what is the upward acceleration?

Starting from rest, how far does it rise in 3 seconds?

D Watch Video Solution

2. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is
dropped by a person standing on the top of
the truck (6 m high from the ground). What are the:- velocity. (Neglect air resistance.)

D Watch Video Solution

3. A truck starts from rest and accelerates uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is dropped by a person standing on the top of the truck (6 m high from the ground). What are the:- acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$?
(Neglect air resistance.)

D Watch Video Solution

4. A machine gun fires a bullet of mass 50 g with a velocity $1500 \mathrm{~ms}^{-1}$. The man holding it, can exert a maximum force of 600 N on the
gun. How many bullets can he fire per second at the most ?

D Watch Video Solution

5. A circket ball of mass 500 g is mocing with
speed of $36 \mathrm{kmh}^{-1}$. It is reflected back with
the same speed. What is the impulse applied on it ?
6. A force of 10 N acts on a body for 3 microsecond (μs). Calculate the impulse. If mass of the body is 5 g , calculate the change of velocity.

- Watch Video Solution

7. A bosy of mass 0.25 kg moving with velocity
$12 m s^{-1}$ is stopped by applying a force of 0.6
N. Calculate the time taken to stop the body.

Also calculate the impluse of this force.
8. A hammer wrighing 1 kg moving with the speed of $10 \mathrm{~ms}^{-1}$ strikes the head of a nail driving it 10 cm into a wall. Neglecting the mass of the nail, calculate the acceleration during the impact.

D Watch Video Solution

9. A hammer wrighing 1 kg moving with the speed of $10 \mathrm{~ms}^{-1}$ strikes the head of a nail
driving it 10 cm into a wall. Neglecting the mass of the nail, calculate the acceleration during the impact.

D Watch Video Solution

10. A hammer weighing 1 kg moving with the speed of $10 \mathrm{~ms}^{-1}$ strikes the head of a nail driving it 10 cm into a wall. Neglecting the mass of the nail, calculate the impulse.

- Watch Video Solution

11. A spring balance is attached to the ceiling of a stationary lift. A man suspends a block from the hook of the spring balance and the balance reads 98 N . What will be the reading of the spring balance, if the lift starts moving downward with an acceleration of $2 m s^{-2}$?

D Watch Video Solution

12. A heavy load of mass 600 kg is placed on
the weighing machine lying in a lift. What will
be reading of the weighing machine, when the
lift is at rest?

D Watch Video Solution

13. A heavy load of mass 600 kg is placed on
the weighing machine lying in a lift. What will be reading of the weighing machine, when the
lift is moving upwards with an acceleration of $2.2 m s^{-2}$?
14. A heavy load of mass 600 kg is placed on the weighing machine lying in a lift. What will be reading of the weighing machine, when the lift is moving downwards with an acceleration of $2.8 \mathrm{~ms}^{-2}$?

- Watch Video Solution

15. A heavy load of mass 600 kg is placed on
the weighing machine lying in a lift. What will be reading of the weighing machine, when the
lift is falling freely due to the rupture of the cable?

- Watch Video Solution

16. During explosion, a bomb explodes into
three pieces. Two fragments, whose masses
are 0.8 kg and 0.5 kg fly off with velocities of
$10 \mathrm{~ms}^{-1}$ and $16 m s^{-1}$ respectively along the paths at right angles to each other. If the third fragment goes off with a velocity of $24 m s^{-1}$,
then find its mass and direction of motion w.r.t. the first fragment.

D Watch Video Solution

17. Two masses 7 kg and 12 kg are connected at
the two ends of a light inextensible string that passes over a frictionless pulley [Fig.

Fig. 1.16
the acceleration of the masses and the tension in the string, when the masses are released.
(Watch Video Solution
18. A horizontal force 600 N pulls two masses

10 kg and 20 kg lying on a frictionless table conneced by a light string find tension in the string if the force is applied on 20 kg mass.

D Watch Video Solution

19. Two blocks, each having, mass 20 kg , rest on a frictionless surface as shown in Fig

Fig. 1.22

Assuming the pulleys to be light and frictionless, calculate acceleration of the system. assume $\sin \theta=3 / 5$

- Watch Video Solution

20. Two blocks, each having, mass 20 kg , rest on a frictionless surface as shown in Fig

Assuming the pulleys to be light and frictionless, calculate the tension in the string.

Fig. 1.22

D Watch Video Solution

21. Two blocks, each having, mass 20 kg, rest on a frictionless surface as shown in Fig Assuming the pulleys to be light and
frictionless, calculate the time required for block A to move 1 m down the plane.

Fig. 1.22

- Watch Video Solution

22. Two blocks connected by an inextensible string passing over a light frictionless pulley are resting on two smooth inclined planes as
shown in Determine the acceleration of the
blocks and the tension in the string. Assume the string to be massless. Fig.

- Watch Video Solution

23. A particle of mass $10^{-2} \mathrm{~kg}$ is moving along
the positive X -axis under the influence of a force $F(x)=-\frac{K}{2 x^{2}}$ where $K=10^{-2} N m^{2}$
. When it is at $\mathrm{x}=1.0 \mathrm{~m}$, its velocity $v=0$. Find its velocity, when it reaches $x=0.50 \mathrm{~m}$.

D Watch Video Solution

24. A disc of mass 10 g is kept floating horizontally by throwing 10 marbles s^{-1} against it from below. If the mass of each marble is 5 g , calculate the velocity with which
the marbles are striking the disc. Assume that
the marbles strike the disc normally and rebound downward with the same speed.
25. A cricket ball of mass 150 g is moving with a velocity of $12 \mathrm{~ms}^{-1}$ and is hit by a bat so that
the ball is turned back with a velocity of $20 \mathrm{~ms}^{-1}$. The force of blow acts for 0.01s on the ball. Find the average force exerted by the bat on the ball.

- Watch Video Solution

26. A uniform rope of Irngth L is pulled by constant force F. What is the tension in the rope at a distance l from the end, where it is applied?

D Watch Video Solution

27. A piece of uniform string hangs vertically
so that its free end just touches horizontal surface of a table. The upper end of the strig is now released. Show that at any instant during
the falling of string, the total force on the surface is three times the weight of that part of string lying on the surface.

D Watch Video Solution

28. A lift is going up. The total mass of the lift
and the passengers is 1500 kg . The variation in
the speed of the lift is given by the graph as
shown in Fig.

Fig. 1.30
What
will be the tension in the rope pulling the lift at time t equal to $11 s$.

D Watch Video Solution

29. A lift is going up. The total mass of the lift and the passengers is 1500 kg . The variation in
the speed of the lift is given by the graph as shown in Fig.

Fig. 1.30
What
will be the tension in the rope pulling the lift at time t equal to 6 s .

D Watch Video Solution

30. A lift is going up. The total mass of the lift and the passengers is 1500 kg . The variation in
the speed of the lift is given by the graph as shown in Fig.

Fig. 1.30
What
will be the tension in the rope pulling the lift at time t equal to $1 s$?

D Watch Video Solution

31. A lift is going up. The total mass of the lift and the passengers is 1500 kg . The variation in
the speed of the lift is given by the graph as shown in Fig.

Fig. 1.30
What
will be the average acceleration during the course of the entire motion ?

D Watch Video Solution

32. A lift is going up. The total mass of the lift and the passengers is 1500 kg . The variation in
the speed of the lift is given by the graph as shown in Fig. What is the height, to which the
lift takes the passengers?.

Fig. 1.30

- Watch Video Solution

33. Is force needed to keep a body moving with

uniform velocity?

- Watch Video Solution

34. What is inertia?

D Watch Video Solution

35. How is inertia related to mass of a body?

D Watch Video Solution
36. Why a fan continues to rotate for sometime even after it is switched off ?
37. If you jerk a piece of paper under a book quick enough, the book will not move. Why?

D Watch Video Solution

38. Define the term momentum. Give its SI unit.

- Watch Video Solution

39. A bullet fired from a rifle is more dangerous than an air molecule hitting a person through both of them have atmost the same speed. Explain.

- Watch Video Solution

40. How does Newton's first law of motion
leads to the definition of force?

- Watch Video Solution

41. Is Newton's second law ($F=M a$) always
valid. Give an example in support of your answer.

- Watch Video Solution

42. The rate of change of momentum of a body is $5 \mathrm{kgms}^{-1}$. What is the force acting on the body?
43. Give and state SI unit of force.

D Watch Video Solution

44. What is the difference between mN and nm ?

D Watch Video Solution
45. Action and reaction forces do not balance each other. Why?
46. What is impulsive force?

D Watch Video Solution
47. What is the net force on a cork floating on water?

- Watch Video Solution

48. Which is greater-the attraction of 10 kg mass for earth or the earth's attraction for 10 kg mass ?

D Watch Video Solution

49. A body is moving along a circular path such that its speed always remains constant. Should there be a force acting on the body?
50. State principle of conservation of

momentum.

(Watch Video Solution

51. What is an impulse? How is it related to the change in momentum?

- Watch Video Solution

52. Can a body remain in state of rest, when external forces are acting on it ? Explain your answer.

D Watch Video Solution

53. A body is acted upon by a number of external forces. Can it remain at rest ?

- Watch Video Solution

54. If net force acting on a body is zero, then will the body remain necessarily in rest position?

- Watch Video Solution

55. Name physical situation, where the mass of body changes with time.

- Watch Video Solution

56. When are the two bodies said to posses equal masses?

D Watch Video Solution
57. Is a bus moving along a circular track, an inertia frame of reference?

D Watch Video Solution
58. what can be said about the motion of the vehicle if a plumb line hanging from its roof drops vertically?

D Watch Video Solution

59. The assertion mad by the Newton's first law
of motion that every body continues in its
state of uniform motion in the absence of external force appears to be contradicted in everyday experience. Why?
60. According to Newton's first law of motion,
a body moving with a uniform speed along a stright line should continue moving. In practice, a body in motion stops after some time. Explain the reason.

D Watch Video Solution

61. Explain why:- a horse cannot pull a cart and
run in empty space.

- Watch Video Solution

62. Why do we fall forward, when a moving body suddenly stops ? Explain, stating the law required.

- Watch Video Solution

63. Why the passengers fall in backward direction when a bus suddenly starts moving
from the rest position.

Watch Video Solution

64. A stone when thrown on a glass window smashes the window pane to pieces, but a bullet from the gun passes through making a clean hole. Why?

- Watch Video Solution

65. Why are porcelain objects wrapped in
paper or straw before packing for transportation?
66. Why are shockers used in scooter and cars
? Explain.

- Watch Video Solution

67. A man suspends a fish from the spring balance held in his hand and the balance reads 9.8 N . While shifting the balance to his other hand, the balance slips and falls down.

What will be the reading of the balance during the fall ?

D Watch Video Solution

68. A spring weighing machine inside a stationary lift reads 50 kgf , when a mans stands on it. What would happen to the scale reading, if the lift is moving upward with constant velocity?
69. A spring weighing machine inside a stationary lift reads 50 kgf , when a mans stands on it. What would happen to the scale reading, if the lift is moving upward with constant acceleration ?

- Watch Video Solution

70. In which case will a rope have the greater
tension : two men pull the ends of the rope with forces F equal in magnitude but opposite in direction.

- Watch Video Solution

71. In which case will a rope have the greater tension :(a) One end of the rope is fastened to a fixed support and the other is pulled by a man with a force 2 F.(b) Two men pull the ends of the rope with forces F equal in magnitude but opposite in direction.
72. A rope passes over a pulley, which is sufficiently high. Two monkeys of equal weights climb the rope from opposite ends, one of then climbing quickly than the other, relative to the rope. Which of the monkeys will reach the top first ? Assume that pulley is weightless, while the rope is weightless as well as inextensible.

D Watch Video Solution

73. A massless rope is passed over a frictionless pulley. A monkey holds on to one end of the rope and a mirror having the same weight as the monkey, is attached to the other end of the rope at the monkey's level. Can the monkey get away from his image seen in the mirror by climbing up the rope.

D Watch Video Solution

74. A massless rope is passed over a frictionless pulley. A monkey holds on to one end of the rope and a mirror having the same weight as the monkey, is attached to the other end of the rope at the monkey's level. Can the monkey get away from his image seen in the mirror by climbing down the rope.

D Watch Video Solution

75. A massless rope is passed over a frictionless pulley. A monkey holds on to one end of the rope and a mirror having the same weight as the monkey, is attached to the other end of the rope at the monkey's level. Can the monkey get away from his image seen in the mirror by by releasing the rope ?
76. What is inertia ? Why do we call the

Newton's first law as the law of inertia ?

Explain.
(Watch Video Solution
77. Define the term inertia. Explain three types
of inertia with examples.

- Watch Video Solution

78. What are the S.I. and C.G.S units of force?

Give a relationship between them.

D Watch Video Solution
79. How does Newton's first law of motion leads to the definition of force?

D Watch Video Solution

80. Newton's second law gives the measure of

- Watch Video Solution

81. State Newton's second law of motion. How it helps us to measure force ? State its CGS and SI units.

D Watch Video Solution

82. State Newton's laws of motion. Hence, derive the relation $\vec{F}=M \vec{a}$, where the symbols have their usual meanings.
83. Discuss consequences of Newton's second law of motion.

- Watch Video Solution

84. State Newton's second law of motion. How
it helps us to measure force ? State its CGS and SI units.
85. State the law of conservation of angular momentum.

D Watch Video Solution
86. Derive the law of conservation of linear momentum from Newton's third law of motion.

D Watch Video Solution
87. Two masses 7 kg and 12 kg are connected
at the two ends of a light inextensible string
that passes over a frictionless pulley [Fig.

the acceleration of the masses and the tension in the string, when the masses are released.
88. How does the weight of a man standing in
a lift changes, when the lift accelerates upwards with an acceleration a ?

D Watch Video Solution

89. How does the weight of a man standing in
a lift changes, when the lift accelerates downwards with an acceleration a ?
90. Define concurrent forces and describe equilibrium of concurrent forces.

D Watch Video Solution

91. D,E,F are mid-points of the sides of the triangle $A B C$, show that for any point O, the system of concurrent forces represented by $\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C}$ is equivalent to the system represented by $\overrightarrow{O D}, \overrightarrow{O E}, \overrightarrow{O F}$.
92. State Newton's second law of motion.

Hence, derive the equation of motion
$F=M a$. From it, obtain the unit of force in $S I$.

D Watch Video Solution

93. Newton's second lasw of motion is not the
real law of motion.(Yes//No)

D Watch Video Solution
94. Newton's second law gives the measure of

D Watch Video Solution

95. State principle of conversation of

momentum.

D Watch Video Solution
96. State principle of conversation of

momentum.

D Watch Video Solution

97. State principle of conversation of momentum.

D Watch Video Solution
98. State principle of conversation of

momentum.

- Watch Video Solution

99. State principle of conversation of momentum.

D Watch Video Solution
100. State and prove the principle of conversation of linear momentum. Apply this
law, to explain why a rocket goes up, when fired.

D Watch Video Solution

101. State and prove the principle of conversation of linear momentum. Apply this
law, to explain why the boat moves away, when a man jumps from it to the shore.
102. A force of 128 gf acts on a mass of 490 g for 10 s . What velocity will it give to the mass?

D Watch Video Solution

103. A constant force acts for 3 s on a body of mass 16 kg and then ceases to act. During the next 3 s , the body covers 81 m . Find the magnitude of the force.
104. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 m s^{-1}$. How long does the body take to stop ?

D Watch Video Solution

105. A constant force acting on a body of mass
3.0 kg changes its speed from $2.0 \mathrm{~ms}^{-1}$ to
$3.5 \mathrm{~ms}^{-1}$ in 25 s . The direction of the motion
of the body remains unchanged. What is the magnitude and direction of the force?

D Watch Video Solution

106. A motor car running at the rate of 7 m $s^{\wedge}-1$ can be stopped by its brakes in 10m.Prove that total resistance to the motion when braeks are on is one-fourth of the weight of the car.

D Watch Video Solution

107. A bullet of mass 0.04 kg moving with a speed of $90 \mathrm{~ms}^{-1}$ enters a heavy wooden block and is stopped after a distance of 60 cm .

What is the average resistive force exerted by the block on the bullet?

D Watch Video Solution

108. A bullet of mass 25 g strikes horizontally a
block of wood with a velocity of $250 \mathrm{~ms}^{-1}$ and penetrates it a distance of 1.0 m . Calculate the resistance to be uniform. How far would the
bullet have penetrated, if the speed of the bullet has been $200 \mathrm{~ms}^{-1}$?

D Watch Video Solution

109. A bullet moving with a velocity of $100 \mathrm{~ms}^{-1}$ pierces a block of wood and moves out with a velocity of $10 \mathrm{~ms}^{-1}$. If the thickness of the block reduces to one half of the previous value, what will be the emerging velocity of the bullet?

D Watch Video Solution

110. A batsman hits back a ball straight in the direction of the bowler without changing its speed of $12 \mathrm{~ms}^{-1}$. If the mass of the ball is 0.15
kg , determine the impulse imparted to the ball.

- Watch Video Solution

111. A force of 16 N acts on a ball of mass 80 g
for 1 microsecond. Calculate the acceleration and the impulse.
112. A bullet of mass 60 g moving with a velocity of $500 \mathrm{~ms}^{-1}$ is brought to rest in 0.01 s . Find the impulse and the average force of blow.

- Watch Video Solution

113. A cricket ball of mass 0.2 kg moves with a
velocity of $20 \mathrm{~m} / \mathrm{s}$ and is brought to rest by a
player in 0.1 s . Calculate the impulse of the ball and average force applied by the player.

D Watch Video Solution

114. Calcualte the impulse necessary to slope 1500 kg car travelling at $90 \mathrm{kmh}^{-1}$.

- Watch Video Solution

115. A glass marbles, whose mass is 100 g , falls
from a height of 40 m and rebounds to a
height of 10 m . Find the impulse and the vaergae force between the marble and the floor, if the time during which they are in contact is 0.2 s . take $g=9.8 m s^{-2}$.

D Watch Video Solution

116. A hammer of mass 1 kg strikes on the head of a nail with a velocity $10 \mathrm{~ms}^{-1}$. It drives the nail 0.1 m into a wooden block. Calculate the force applied by the hammer and the time of impact.

Watch Video Solution

117. A ball moving with a momentum of
$15 \mathrm{~ms}^{-1}$ strikes against the wall at an angle of
30° and is reflected with the same momentum at the same angle. Calculate the impulse.

D Watch Video Solution

118. A batsman deflects a ball by an angle of
45° without changing its initial speed which is equal to $54 k m / h$. What is the impulse
imparted to the ball ? (Mass of the ball is 0.15 kg.)

D Watch Video Solution

119. A body of mass 100 kg stands on a spring weighing amchine inside a lift. The lift starts to ascend with acceleration of $2.2 m s^{-2}$. What is the reading of the machine?
120. A woman weighing 50 kgf stands on a weighing machine placed in a lift. What will be the reading of the machine, when the lift is moving upwards with a uniform velocity of $5 m s^{-1}$.

D Watch Video Solution

121. A woman weighing 50 kgf stands on a weighing machine placed in a lift. What will be the reading of the machine, when the lift is
moving downwards with a uniform acceleration of $1 \mathrm{~ms}^{-2}$? Take $g=10 \mathrm{~ms}^{-2}$.

D Watch Video Solution

122. An elevator weighing 5000 kgf is moving upward and tension in the supporting cable is

50000 N. Find the upward acceleration. How far does it rise in a time of 10 seconds starting from rest ?
123. A gun weighing 10 kg fires a bullet of 50 g with a velocity of $500 \mathrm{~ms}^{-1}$. With what velocity does the gun recoil ? What is the resultant momentum of the gun and the bullet before and after firing ?

D Watch Video Solution

124. A shell of mass 10 kg moving with a velocity of $20 \mathrm{~ms}^{-1}$ explodes into two portions of 6 kg and 4 kg respectively. If the
former is just brought to rest after the explosion, find the velocity of the latter.

D Watch Video Solution

125. Two bodies of mass 2 kg nd 3 kg are connected to the ends of a string of negligible mass and then passed around a frictionless pulley. Calculate the acceleration of the system.

- Watch Video Solution

126. Two bodies of mass 2 kg nd 3 kg are connected to the ends of a string of negligible mass and then passed around a frictionless pulley. Calculate the tension in the string.

D Watch Video Solution

127. A light string passing over a smooth light pulley connects two blocks of masses m_{1} and m_{2} (vertically). If the acceleraton of the system is $g / 8$, find the ratio of the two masses.
128. A block of mass 0.8 kg is dragged along a level surface at constant velocity by a hanging block of mass 0.2 kg s shown in Fig.

Calculate the tension in the string and the acceleration of the system.
129. A wooden block weighing 200 g is attached to a hanger weighing 45 g with a fine thread. The block is placed on a frictionless surface and after passing thread over a smooth pulley, hanger is allowed to pull the block. Find the acceleration of the system and tension in the string.
130. Three identical blocks of masses $m=2 k g$ are drawn by a force $F=10.2 N$ with an acceleration of $0.6 m s^{-2}$ on a frictionless surface. What is the tension (in N) in the string between the blocks B and C ?

Fig. 1.36
Billemallomanie Drahilnw-

D Watch Video Solution

131. A lift is moving down with an acceleration
floor. Assuming $g=9.8 m s^{-2}$, how long will the ball take to hit the floor?

D Watch Video Solution

132. A 20 kg cart, with a boy of mass 60 kg
riding it, is moving with a speed of $2 m s^{-1}$.

The boy jumps off the cart. What is the change in speed of the cart, if the boy on hitting the ground is moving with the same speed as the cart?
133. A 20 kg cart, with a boy of mass 60 kg riding it, is moving with a speed of $2 m s^{-1}$.

The boy jumps off the cart. What is the change in speed of the cart, if not moving relative to the ground?

- Watch Video Solution

134. A 20 kg cart, with a boy of mass 60 kg
riding it, is moving with a speed of $2 m s^{-1}$.

The boy jumps off the cart. What is the change
in speed of the cart, if moving with twice the initial speed of the cart in same direction?

D Watch Video Solution

135. Three blocks of masses
$m_{1}=10 \mathrm{~kg}, m_{2}=20 \mathrm{~kg}$ and $m_{3}=30 \mathrm{~kg}$ are connected by strings on a smooth horizontal take as shown in Fig.

pulled to the right with a force $\mathrm{F}=60 \mathrm{~N}$. Find
the acceleration of the system and tensions T_{1} and T_{2}.

D Watch Video Solution

136. A wooden block of mass 0.01 kg is dropped from the top of a cliff 100 m high.

Simultaneously, a bullet of mass 0.01 kg is fired from the foot of the cliff upwards with a velocity of $100 \mathrm{~ms}^{-1}$. Where and after what time, will they meet ?
137. A wooden block of mass 0.01 kg is dropped
from the top of a cliff 100 m high. Simultaneously, a bullet of mass 0.01 kg is fired from the foot of the cliff upwards with a velocity of $100 \mathrm{~ms}^{-1}$. Where and after what time, will they meet ?

Watch Video Solution

