©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Gravitational potential and potential

energy

Example

1. The distance between the moon and the earth is $3.8 \times 10^{8} \mathrm{~m}$. Find the intensity of the
gravitational potential at the midpoint of the
line joining them. given that the mass of the earth is $6 \times 10^{24} \mathrm{~kg}$, mass of the moon $=$ $7.4 \times 10^{22} \mathrm{~kg}$ and G $=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

2. The distance between the moon and the earth is $3.8 \times 10^{8} \mathrm{~m}$. Find the intensity of the gravitational potential at the midpoint of the
line joining them. given that the mass of the
earth is $6 \times 10^{24} \mathrm{~kg}$, mass of the moon $=$ $7.4 \times 10^{22} \mathrm{~kg}$ and G $=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

3. Find the velocity of escape at the moon.

Given that its radius is $1.7 \times 10^{6} m$ and the value of 'g' is $1.63 m s^{-2}$.

D Watch Video Solution
4. Determine the escape speed of Moon. Given, the radius of Moon is $1.74 \times 10^{6} \mathrm{~m}$, its mass is $7.36 \times 10^{22} \mathrm{~kg} . \mathrm{G}=6.67 \times 10^{-11} \mathrm{~nm}^{2} \mathrm{~kg}^{-2}$.

D Watch Video Solution

5. A particle of mass 10 g is kept on the surface of a uniform sphere of mass 100 kg and radius

10 cm . Find the work to be done against the gravitational force between them to take the
partice far away from the sphere (you may take $\left.\mathrm{G}=6.67 \times 10^{-11} N \frac{m^{2}}{k} g^{2}\right)$

D Watch Video Solution

6. If g is the acceleration due to gravity on the earth's surface, what will be the gain in the potential energy of an object of mass m raised from the surface of the earth to a height equal to twice the radius of the earth?
7. In Greek methology, Atlas carried the entire earth on his shoulders. How much work did

Atlas do in supporting the earth on his shoulders?

D Watch Video Solution

8. A geostationary satellite orbits the earth at
a height of nearly $36,000 \mathrm{~km}$ from the surface of the earth. What is the potential due to earth's gravity at the site of this satellite? Take the potential energy at infinity to be zero.

Given, mass of the earth- $6.0 \times 10^{24} \mathrm{~kg}$ and radius of the earth $=6,400 \mathrm{~km}$.

D Watch Video Solution

9. Three mass points each of mass mare placed at the vertices of an equilateral triangle of side 1. What is the gravitational field and potential due to three masses at the centroid of the triangle?

D Watch Video Solution

10. The potential energy between two atoms in
a molecule is given by
$U(x)=\left(\frac{a}{x^{12}}\right)-\left(\frac{b}{x^{6}}\right)$, where a and b are
positive constants and x is the distance between the atoms. find the distance between
the atoms so that the molecule is in stable equilibrium

- Watch Video Solution

11. Jupiter has a mass 318 times that of the earth and its radius is 11.2 times the earth's
radius. Estimate the escape velocity of a body
from jupiter's surface. Given, the escape velocity from the earth's surface = $11.2 k m s-1$.

- Watch Video Solution

12. With what velocity should an object be projected from the surface of the earth so that its height above the surface becomes equal to the radius of the earth?
13. the earth is assumed to be a sphere of radius R. A platform is arranged at a height R from the surface of the earth. the escape velocity of a body from its platform is $k v_{e}$ where v_{e} is its escape velocity from the surface of the earth. find the value of k.

- Watch Video Solution

14. The escape speed of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is
projected out with thrice this speed. What is
the speed of the body far away from the earth? Ignore the presence of the sun and other planets.

D Watch Video Solution

15. Distance between the centres of two stars
is 10a. the masses of these charges are M and

16 M whereas the radii are a and 2 a respectively. a body of mass m is fired straight
from the surface of the largest star towards
the smallest star. what would be its minimum initial speed to reach the surface of the smaller star? obtain an expression in terms of G,M and a.

D Watch Video Solution

16. There is a crater of depth $\frac{R}{100}$ on the surface of the moon (radius R). A projectile is fired vertically upwards from the crater with velocity, which is equal to theescape velocity v
from the surface of the moon. Find the
maximum height attained attained by the projectile.

D Watch Video Solution

17. What will be the corresponding expression for the energy needed to completely diassemble the planet earth against the gravitational pull amongst its constituent particles? Assume the earth to be a sphere of uniform mass density. calculate the energy,
given that the product of the mass and the radius of the earth to be $2.5 \times 10^{31} \mathrm{~kg}-\mathrm{m}$

D Watch Video Solution

18. What is meant by gravitational field strength?

- Watch Video Solution

19. What is the value of gravitational field on
the surface of earth?
20. What is the gravitational field strength of a planet, where the weight of a 60 kg astronaut is 300 N ?

- Watch Video Solution

21. What is the gravitational potential energy
of two point masses infinite distance away
from each other?

Watch Video Solution

22. where is a value for gravitational potential energy maximum?

- Watch Video Solution

23. Is the gravitational potential energy of bodies is positive or negative? Give reason in support of your answer.
24. Can gravitational potential be positive?

D Watch Video Solution

25. Does the escape velocity depend upon the mass of the object to be projected?

D Watch Video Solution

26. An elephant and an ant are to be projected
far away into space. Do we need different
velocities for their projection?

- Watch Video Solution

27. Why do different planets have different escape velocities?

D Watch Video Solution

28. Name two factors which determine whether a planet has an atmosphere or not
29. What is gravitational force?

D Watch Video Solution
30. Define the terms ,gravitational field inensity and gravitaional potential.

- Watch Video Solution

31. The acceleration due to gravity at a place gives a measure of the gravitational field at that point, Explain.

D Watch Video Solution

32. Four equal masses are placed at the four comers of a square. What is the intensity of gravitational field at the point of intersection of the diagonals of the square?
33. The earth's gravitational force causes an acceleration of $5 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)$ in 1 kg mass somewhere in space. How much will the acceleration of a 3 kg mass be at the same place? Give your answer with reason.

D Watch Video Solution

34. Why do stars appear displaced away from the sun?
35. Does the change in gravitational potential energy of a body between two points depend upon the nature of path followed? Explain.

D Watch Video Solution

36. What is the gravitational potential energy
of two point masses infinite distance away
from each other?

- Watch Video Solution

37. A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant:- linear speed,

D Watch Video Solution

38. A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant:angular momentum,
39. A comet orbits the sun in a highly elliptical
orbit. Does the comet have a constant:- total
energy throughout its orbit? Neglect any mass
loss of the comet when it comes very close to
the Sun.

D Watch Video Solution

40. A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant:potential energy,
41. A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant:- total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.

- Watch Video Solution

42. What is gravitational potential? What are its units and dimensions?

- Watch Video Solution

43. Explain why moon has no atmosphere.

- Watch Video Solution

44. Why there is practically no atmosphere near the surface of the moon?

- Watch Video Solution

45. Why does hydrogen escape faster from earth's atmosphere than oxygen?

D Watch Video Solution

46. Why does the atmosphere of jupiter contain light gases (mostly hydrogen), whereas the earth's atmosphere has little of hydrogen gas?

D Watch Video Solution

47. Two spheres of masses 64 kg and 298 kg are placed a distance 10 m apart. Find the position of a point on the line joining the centres of the two spheres, where the gravitational field is zero.

- Watch Video Solution

48. The distance between earth and moon is
$3.8 \times 10^{5} \mathrm{~km}$ and the mass of earth is 81 times
the mase of the moon. Find the position of a point on the line joining the centres of earth
and moon, where the gravitational field is zero. Given, radius of the earth- $6.04 \times 10^{6} \mathrm{~m}$.

D Watch Video Solution

49. Three mass, each of 1 kg , are placed on the vertices of an equilateral triangle of side
length 0.4 m . What is the total gravitational potential energy of the configuration?
50. It R is radius of the earth, then find the energy required to move a body of map in from an orbit of radius $2 R$ to $3 R$

- Watch Video Solution

51. How much energy must be given to a 100
kg rocket missile to carry it from the surface of eartly into five space? Given, the gravitational constant, C- $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ mass of
the earth $6 \times 10^{24} \mathrm{~kg}$ and radius of the earth $6.4 \times 10^{6} \mathrm{~m}$

D Watch Video Solution

52. Find the change in gravitational potential energy of a body of mass 50 kg , when it is moved from the surface of earth to a point at height twice the radius of the earth. Givent radius of the earth, $\mathrm{R}-6.4 \times 10^{6} \mathrm{~m}$ and acceleraation due to gravity, $g=9.8 m s^{-2}$
53. A body is projected vertically upwards from the surface of the Earth so as to reach a height equal to the radius of the Earth. Neglecting resistance due to it, calculate the initial speed which should be imparted to the body. Mass of Earth $=5.98 \times 10^{24} \mathrm{~kg}$, Radius of Earth $=6400 \mathrm{~km}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

54. A body is released at a distance far away
from the surface of the earth. Calculate its
speed when it is near the surface of earth.
Given $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$ radius of earth $\mathrm{R}=6.37 \times 10^{6}$
m

- Watch Video Solution

55. The radius of the earth is $6.37 \times 10^{6} \mathrm{~m}$, its mean density is $5.5 \times 10^{3} \mathrm{kgm}^{-3}$ and $\mathrm{G}=$
$6.67 x 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ Calculate the earth's surface potential.

D Watch Video Solution

56. Calculate the gravitational field strength and the gravitational potential at the surface of the moon. The mass of the moon is $7.34 \times 10^{22} \mathrm{~kg}$ and its radius is $1.74 \times 10^{6} \mathrm{~m}$. (G=6.67 $\times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$)
57. At a point above the surface of the earth, the gravitational potential is-
$5.12 \times 10^{7} \mathrm{Jkg}^{-1}$ and acceleration due to gravity is $6.4 \mathrm{~ms}^{-2}$ Find the height of the point above the surface of earth. Given, radius of the earth, $\mathrm{R}-6.4 \times 10^{6} \mathrm{~m}$.

- Watch Video Solution

58. If the potential at a point due to the earth's gravitation is taken to approach zero as the distance of the point from the earth's
centre becomes larger and larger (e approaches infinity), what is the gravitational potential and potential energy of a body of mass 0.1 kg at the earth's surface.

D Watch Video Solution

59. If the potential at a point due to the earth's gravitation is taken to approach zero as the distance of the point from the earth's centre becomes larger and larger (e approaches infinity), what is the gravitational
potential and potential energy of a body of mass 0.1 kg at a height above the surface of the earth equal to its mean radios R. Given that $\mathrm{G}=6.67 x 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, mans of the earth $=5.98 \times 10^{24} \mathrm{~kg}$ and $\mathrm{R}-6.37 \times 10^{6} \mathrm{~m}$.

Assume the earth to be a perfect sphere of uniform mass density

D Watch Video Solution

60. Calculate the speed of projection necessary to send a body right out of the filed
of the earth's grvivtational attraction. G= $6.63 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$ Mass of the earth $=$ $6.05 \times 10^{27} g$ Radius of the earth $=6.37 \times 10^{6}$ m.

D Watch Video Solution

61. If Earth has mass nine times and radius
twice that of the planet Mars, calculate the velocity required by a rocket to pull out of the gravitational force of Mars. Take escape speed on surface of Earth to be $11.2 \mathrm{~km} / \mathrm{s}$

Watch Video Solution

62. What will be acceleration due to gravity on the surface of moon if its radius is $\frac{1}{4}$ th the radius of the earth and its mass is $\frac{1}{81}$ th the mass of the earth? What will be the escape velocity on the surface of moon, if it is $11.2 \mathrm{kms}^{-1}$ on the surface of the earth?

- Watch Video Solution

63. A body of mass 100 kg falls on the earth
from infinity. Given radius of earth $=6400 \mathrm{~km}$
and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Air friction may be neglected. Its velocity and energy on reaching the earth are:

- Watch Video Solution

64. The escape speed of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is projected out with thrice this speed. What is
the speed of the body far away from the earth? Ignore the presence of the sun and other planets.

D Watch Video Solution

65. Two bodies of masses m_{1} and m_{2} are
placed at a distance r apart. Show that at the
position, where the gravitational field due to
them is zero, the potential is given by
$V_{\text {grav }}=-\frac{G}{r}\left(m_{1}+m_{2}+2 \sqrt{m_{1} m_{2}}\right)$
66. The masses and radii of the Earth and the

Moon are M_{1}, R_{1} and M_{2}, R_{2} respectively.
Their centres are at a distance d apart. Find
the minimum speed with which a particel of mass m should be projected from a point midway between the two centres so as to escape their gravitation pull

D Watch Video Solution

67. Two masses M_{1} and M_{2} are initially at rest
at infinite distance apart. They approach each
other due to gravitational interaction. Find their speed of approach at the instant, when they are distance rapart.

D Watch Video Solution

68. A spaceship is stationed on Mars. How much energy must be expended on the spaceship to launch it out of the solar system
? Mass of the space ship $=1000 \mathrm{~kg}$, mass of the
sun $=2 \times 10^{30} \mathrm{~kg}$, mass of mars $=6.4 \times l 0^{23} \mathrm{~kg}$,
radius of mars $=3395 \mathrm{~km}$, radius of the orbit of mars $=2.28 \times 10^{\wedge} 8 \mathrm{~km}, G=6.67 \times x 10^{\wedge}-11 \mathrm{~N} \mathrm{~m}^{\wedge} 2$ $k g^{\wedge}-2^{\prime}$.

D Watch Video Solution

69. A rocket is launched vertically from the surface of earth with a velocity u. Find the height up to which the rocket can go from the
surface of the earth before falling back to earth

D Watch Video Solution

Exercise

1. What do you understand by gravitational field?

2. Define gravitational field. Give its SI unit.

- Watch Video Solution

3. Show that the gravitational field and potential at any point on the surface of the earth are g and $g R$ respectively. The earth may be assumed to be a sphere of uniform density.

D Watch Video Solution

4. Define the terms, gravitational field inensity
and gravitaional potential.

D Watch Video Solution
5. Define gravitational potential and find an expression for it.

D Watch Video Solution
6. What is escape velocity ?

- Watch Video Solution

7. Define escape velocty. Obtain an expression for the escape velocity of a body from the surface of earth.

- Watch Video Solution

8. Define escape velocty. Obtain an expression for the escape velocity of a body from the surface of earth.
9. Show that the escape velocity of a planet is
$\sqrt{2 g R}$ where g is the acceleration due to gravity of the planet and R is the radius.

(Watch Video Solution

10. Value of escape velocity from the earth's surface is
11. Show that the square of the escape velocity
is equal to the product of the diameter of the earth and the acceleration due to gravity.

- Watch Video Solution

12. Show that the velocity, with which an object
is to be projected from the surface of the earth, so that it may overcome the gravitational pull of the earth, must have a maximum value of ${ }^{\text {s }}$ qrt($2 G M / R$).
13. It is said that Bhima was so powerful a person that held throw big elephants so that they would never return to the surface to the earth. How much work had he to do in throwing up an elephant of mass m ?

D Watch Video Solution

14. Derive an expression for gravitational potential energy of body of mass M at

distance r from centre of earth.

D Watch Video Solution

15. Derive an expression for the increase in potential energy of a body, when moved from a point at distance r_{1}, to a point at distance r_{2}
('r_1

D Watch Video Solution

16. Prove that the velocity of escape of a body
from the earth's surface is $\sqrt{2}$ times the velocity for a circular orbit just above the earth's surface

- Watch Video Solution

17. Find the expression for escape velocity of earth.
