©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Motion of Satellites

Example

1. An artificial satellite circles around the earth
at a distance of 3400 km . Calculate the period
of revolution and orbital velocity. given radius of the earth-6400km g=980 cms^{-2}

D Watch Video Solution

2. The mean orbital radius of the earth around
the sun is $1.5 \times 10^{8} \mathrm{~km}$. Estimate the mass of the sun, if G=6.67 $\times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

3. The period of moon around the earth is 27-3 days and the radius of the orbit is $3.9 \times 10^{5} \mathrm{~km}$.

If $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, find the mass of the earth.

- Watch Video Solution

4. An earth's satellite makes a circle around
the earth in 90 minutes. Calculate the height of the satellite above the earth's surface. Given
radius of the earth is 6400 km and $\mathrm{g}=$ $980 \mathrm{cms}^{-2}$

D Watch Video Solution

5. Two satellites A and B, each of mass 50 kg are in circular orbits at altitudes of $1,000 \mathrm{~km}$ and $35,000 \mathrm{~km}$ respectively. What is the difference in the gravitational potential energies of the two satellites in their respective orbits? Given that mass of the
earth, $\mathrm{M}=6 x 10^{24} \mathrm{~kg}$ radius of the earth, $\mathrm{R}=$ $6.4 \times 10^{6} \mathrm{~m}$ and G=6.67x10 $0^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

6. A satellite is moving in an orbit of radius
raround the earth. Find the ratio of its kinetic energy to potential energy

D Watch Video Solution

7. A satellite is moving in an orbit of radius raround the earth. Find the ratio of its kinetic energy to total energy of the satellite

- Watch Video Solution

8. A satellite orbits the earth at a height of

500 km from its surface. Compute its kinetic energy. Given, mass of satellite $=300 \mathrm{~kg}$, mass of the earth- $6.0 x 10^{24} \mathrm{~kg}$, radius of the earth $6.4 x 10^{6} \mathrm{~m}, \mathrm{G}-6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
9. A satellite orbits the earth at a height of 500 km from its surface. Compute its potential energy. Given, mass of satellite $=300 \mathrm{~kg}$, mass of the earth- $6.0 x 10^{24} \mathrm{~kg}$, radius of the earth $6.4 x 10^{6} \mathrm{~m}$, G-6.67 $\times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

10. A satellite orbits the earth at a height of 500 km from its surface. Compute its potential
energy. Given, mass of satellite $=300 \mathrm{~kg}$, mass of the earth- $6.0 \times 10^{24} \mathrm{~kg}$, radius of the earth $6.4 x 10^{6} \mathrm{~m}, \mathrm{G}-6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

D Watch Video Solution

11. An artificial satellite is moving in a circular orbit around the earth with aspeed equal to
half the magnitude of escape velocity from the earth. Determine the height of the satellite above the earth's surface.
12. An artificial satellite is moving in a circular orbit around the earth with aspeed equal to half the magnitude of escape velocity from the earth. Determine the height of the satellite above the earth's surface.

D Watch Video Solution

13. Consider an earth satellite so positioned
that it appears stationary to an observer on earth and serves the purpose of a fixed relay
station for inter-continental transmission of television and other communications. What should be the height at which the satellite should be positioned and what would be the direction of motion? Given, radius of earth, Rs. 6,400 km.

D Watch Video Solution

14. Two satellites S_{1} and S_{2}, revolve round a
planet in coplanar circular orbits in the same
sense. Their periods of revolutions are 1 h and

8 h respectively. The radius of the orbit of S_{1} is
$10^{4} \mathrm{~km}$. When S_{2} is closest to S_{1} find (1) the speed of S_{2} relative to S_{1}

D Watch Video Solution

15. Two satellites S_{1} and S_{2}, revolve round a
planet in coplanar circular orbits in the same
sense. Their periods of revolutions are 1 h and 8 h respectively. The radius of the orbit of S_{1} is
$10^{\wedge} 4 \mathrm{~km}$. When S_{2} is closest to S_{1} find the
angular speed of S_{2} actually observed by an astronaut in S_{1}

D Watch Video Solution

16. What provides the centripetal force to a satellite revolving around the earth?

- Watch Video Solution

17. Does the orbital velocity depend on the mass of the satellite? Explain
18. Express time period of a satellite in terms of its density of the planet.

D Watch Video Solution

19. What is the time period and radius of the moon's orbit around the earth?
(Watch Video Solution
20. If suddenly the gravitational force of attraction between earth and a satellite revolving around it becomes zero, what will happen to the satellite?

D Watch Video Solution

21. A satellite of mass ' m ' is revolving in a circular orbit of radius 'r' around the earth of mass M. What is the total energy of the satellite?
22. What are the signs of kinetic energy, potential energy and the total energy of a satellite revolving around the earth?

D Watch Video Solution

23. What is geostationary satellite? Calculate height of geostationary satellite.
24. What is the sense of rotation of a geostationary satellite?

- Watch Video Solution

25. What is the time period a geostationary satellite?

D Watch Video Solution
26. What is the height of a geostationary satellite above the surface of the earth?

D Watch Video Solution
27. What is a parking orbit?

D Watch Video Solution

28. What is the full form of geostationary satellite "APPLE"?

- Watch Video Solution

29. Name India's first cosmonaut.

- Watch Video Solution

30. Give two uses of geostationary satellite.

- Watch Video Solution

31. Give two uses of polar satellite.

- Watch Video Solution

32. What is weightlessness?

- Watch Video Solution

33. Why does an astronaut in space feel weightlessness?

- Watch Video Solution

34. Answer the following questions: What is
the frequency of oscillation of a simple pendulum mounted in a cabin that is freely falling under gravity?

D Watch Video Solution

35. The earth is acted upon by the gravitational attraction of the sun. Why does not the earth fall into the sun?
36. The artificial satellite does not have any
fuel, but even then it remains orbiting around the earth. Why? Explain.

- Watch Video Solution

37. Why does a satellite need no fuel to go around a planet in its fixed orbit?
38. If a spoon is dropped from an artificial satellite orbiting around the earth, will it reach the surface of earth? If not, then explain why.

D Watch Video Solution

39. What are the conditions under which a
rocket, fired from the earth, launches an artificial satellite of the earth?
40. Why are space rockets usually launched from west to east?

D Watch Video Solution

41. Is moon a planet? What is the speed of the moon around the sun compared to that of the earth around the sun?

D Watch Video Solution
42. If a satellite going around the earth suddenly loses height, will there be a change in time period of the satellite?

- Watch Video Solution

43. What will be the kinetic energy needed to project a body of mass m from the surface of the earth (radius R) to infinity?
44. Air friction increases the velocity of satellite. explain.

D Watch Video Solution

45. If an earth's satellite is put in an orbit at some height h,where the resistance due the atmosphere cannot be neglected,how will the motion of the satellite be affected?
46. When a satellite is suddenly stopped in its orbit, what will happen to it?

- Watch Video Solution

47. Two satellites of same mass are launched
in the same orbit round the earth rotate opposite to each other. They collide inelastically and stick together as wreckage.

The total energy of the system just after collision is:
48. A satellite with kinetic energy E_{k} is revolving round the earth in a circular orbit. How much more kinetic energy should be given, so that it may just escape into the outer space?

- Watch Video Solution

49. State the necessary conditions for a satellite to appear stationary.
50. State the necessary conditions for a satellite to appear stationary.

D Watch Video Solution

51. If T is period of a satellite revolving just above the surface of a planet whose average density is ρ show that ρT^{2} is a universal constant.
52. what is the difference between ordinary and geostationary satellite?

D Watch Video Solution

53. State the necessary conditions for a satellite to appear stationary.

D Watch Video Solution

54. what is a retrorocket and its function?

D Watch Video Solution

55. Imagine yourself in a spacecraft in circular orbit well behind the space station in the same orbit. You intend to dock with the space station. How can it be done? Explain

D Watch Video Solution

56. It is usually said that inside an artificial satellite, a simple pendulum does not oscillate.

Do you agree with the statement? Justify your answer.

D Watch Video Solution

57. A body has a sense of weightlessness in a satellite revolving round the earth.Why?
58. Why does an astronaut in space feel weightlessness?

- Watch Video Solution

59. The astronauts in a satellite orbiting the Earth feel weightlessness. Does the weightlessness depend upon the distance of the satellite from the Earth ? If so how ? Explain your answer.
60. A person sitting in an artficial satellite feels
weightlessness but a person sitting on moon(which is a satellite of earth) feels some weight.Explain.

- Watch Video Solution

61. An artificial satellite is going around the earth close to its surface Calculate the orbital velocity and time taken by it to complete one
round. The radius of earth $=6,400 \mathrm{~km}$. acceleration due to gravity $=9.8 m s^{-1}$

D Watch Video Solution

62. An artificial satellite is going around the earth at a distance of 1600 km . calculate the period of revolution and orbital velocity. given radius of earth $=6400 \mathrm{~km}$ and acceleration due to gravity $=9.8 m s^{-1}$

- Watch Video Solution

63. A remote sensing satelite of the earth
revolves in a circular orbit at a height of 250
km above the earth's surface. What is the orbital speed. radius of earth $=6.38 \times 10^{6} \mathrm{~m}$ and acceleration due to gravity $=9.8 m s^{-1}$

- Watch Video Solution

64. A remote sensing satellite of earth revolves
in a circular orbit at a height of 250 km above
the earth's surface. What is the period of revolution of the satellite. radius of earth $=$
$6.38 \times 10^{6} \mathrm{~m}$ and acceleration due to gravity= $9.8 m s^{-1}$

D Watch Video Solution

65. A satellite revolves round a planet in an orbit just above the surface of planet. Taking

G- $\quad 6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ and the mean density of the planet $-5.51 \times 10^{3} \mathrm{kgm}^{-3}$, find the period of the satellite.

D Watch Video Solution

66. An artificial satellite is in a circular orbit at

500 km above. the earth's surface. What is the acceleration of the satellite ? Take radius of the earth as $6.5 \times 10^{6} \mathrm{~m}$.

- Watch Video Solution

67. An artificial satellite is in a circular orbit at

500 km above. the earth's surface. What is the acceleration of the satellite ? Take radius of the earth as $6.5 \times 10^{6} \mathrm{~m}$.
68. Venus has a rotational period of 243 days.

What would be the altitude of a satellite synchronised to be stationary for this planet.

Given that radius of the venus is $6,050 \mathrm{~km}$ and acceleration due to gravity on its surface is $9.8 m s^{-2}$

- Watch Video Solution

69. Two identical satellites A and B are in
circular orbits at altitudes of 500 km and 850
km respectively. What is the ratio of their (i)
kinetic energies and (ii) potential energies?
Given that radius of the earth, $\mathrm{R}-6.4 \times 10^{\wedge} 6 \mathrm{~m}$
and the gravitational constant, G-
$6.67 x 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

- Watch Video Solution

70. What are the signs of kinetic energy, potential energy and the total energy of a satellite revolving around the earth?

D Watch Video Solution

71. What is the binding energy of the earthsun system neglecting the effect of presence of other planets and satellites. Given that mass of the earth, $M_{e}=6 \times 10^{24} \mathrm{~kg}$. mass of the sun, $M_{s}=2 \times 10^{30} \mathrm{~kg}$: distance between

the earth and the sun, $\mathrm{r}=1.5 \times 10^{11} \mathrm{~m}$ and | gravitational constant, | G= |
| :--- | :--- |
| $6.6 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ | |

- Watch Video Solution

72. A satellite of mass $1,000 \mathrm{~kg}$ moves in a circular orbit of radius $7,000 \mathrm{~km}$ round the earth. Calculate the total energy required to place the satellite in the orbit from the earth's surface Assuming initially it to be at rest. Take $g=10 \mathrm{~ms}^{-2}$, radius of the carth, R-6,400 km.

Watch Video Solution

73. A spaceship is launched into a circular orbit close to the earth's surface. What additional velocity has now to be imparted to
the spaceship in the orbit to overcome the gravitational pull. Radius of the earth $=6,400$ $\mathrm{km}, \mathrm{g}-9.8 m \mathrm{~s}^{2}$

- Watch Video Solution

74. A sky laboratory of mass $2 \times 10^{3} \mathrm{~kg}$ has to
be lifted from one circular orbit of radius $2 R$ into another circular orbit of radius 3 R.

Calculate the minimum energy required, if the radius of the earth. $\mathrm{R}=6.37 \times 10^{6} \mathrm{~m}$ and $\mathrm{g}=$ $9.8 m s^{2}$?

- Watch Video Solution

75. Show that the moon would depart for ever,
if its speed was increased by 42%.
76. A geostationary satellite is orbiting the earth at a height $6 R$ above the surface of earth, where R is the radius of the earth. The time period of another satellite orbiting at the height 2.5 R from the surface of the earth will be approximately :

- Watch Video Solution

1. Define orbital velocity of a satellite. Obtain

 an expression for orbital velocity of a satellite.
- Watch Video Solution

2. Define orbital velocity and the time period of a satellite. Derive expressions for these

- Watch Video Solution

3. Define orbital velocity of a satellite. Obtain an expression for orbital velocity of a satellite.

- Watch Video Solution

4. Define orbital velocity and the time period of a satellite. Derive expressions for these
5. Define orbital velocity of a satellite. Obtain
an expression for orbital velocity and time period of the satellite.

- Watch Video Solution

6. Define orbital velocity of a satellite. Obtain
an expression for orbital velocity and time period of the satellite.

7. Define orbital velocity of a satellite. Derive

 an expression for it.
D Watch Video Solution

8. Derive expression for the time period of a satellite revolving around the earth.
9. Define orbital velocity of a satellite. Obtain
an expression for orbital velocity and time period of the satellite.

D Watch Video Solution

10. A satellite of mass m is revolving around a
planet of mass M in a fixed circular orbit of
radius r. Find expression for its angular momentum.
11. A satellite is revolving in a circular path close to a planet of density p. Find an expression for its period of revolution.

D Watch Video Solution

12. What do you understand by parking orbits
? Derive an expression for the total energy of a satellite in a circular orbit.
13. What is geostationary satellite ?Write its two applications.

D Watch Video Solution

14. What do you understand by a geostationary satellite?.

D Watch Video Solution

15. State Kepler's laws of planetary motion.

Explain the weightlessness experienced by an astronaut orbiting the earth in a space capsule.

- Watch Video Solution

16. Why does an astronaut in space feel weightlessness?
17. What is weightlessness? How does the weight of the man vary, when the cabin of the lift moves upwardsnwith an acceleration a?

D Watch Video Solution

18. What is weightlessness? How does the weight of the man vary, when the cabin of the
lift moves downwards with an acceleration a?

D Watch Video Solution

19. What is a satellite? Obtain expression for orbital velocity. How do the expressions for orbital velocity and time period modify, when the orbit of the satellite is just above the surface of the earth?

D Watch Video Solution

20. What is a satellite? Obtain expression for period of revolution. How do the expressions for orbital velocity and time period modify,
when the orbit of the satellite is just above the surface of the earth?

D Watch Video Solution

21. What is a satellite? Obtain expression for height of the orbit above the surface of earth.

How do the expressions for orbital velocity and time period modify, when the orbit of the satellite is just above the surface of the earth?

D Watch Video Solution

22. Define orbital velocity of a satellite. Obtain

 an expression for orbital velocity and time period of the satellite.
- Watch Video Solution

23. State the necessary conditions for a satellite to appear stationary.
24. What is a satellite? Obtain expression for the orbital velocity, time period, altitude and angular momentum of a satellite of mass m revolving around earth at a height h above its surface.

- Watch Video Solution

25. Show that an artificial satellite circling round the earth in an orbit of radius R obeys Kepler's third law s The ratio of the square of
its time period of revolution to the cube of its
orbital radius is constant.

- Watch Video Solution

