

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

CONTINUITY AND DIFFERENTIABILITY

1. Check the continuity of the function f given by

f(x) = 2x + 3 at x = 1.

2. Examine whether the function f given by $f(x) = x^2$ is continuous at x= 0.

Watch Video Solution
3. Discuss the continuity of the function f given by

$$f(x) = |x|$$
 at $x = 0$.
Watch Video Solution
4. Show that the function f given by
 $f(x) = \begin{cases} x^3 + 3 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ is not continuous at x=0.

5. Check the points where the constant function f(x)=k is

continuous.

6. Prove that the identity function on real numbers given by

f(x)= x is continuous at every real number.

Watch Video Solution

7. Is the function defined by f(x) = |x|, a continuous

function?

8. Discuss the continuity of the function f given by $f(x) = x^3 + x^2 - 1.$

Watch Video Solution

9. Discuss the continuity of the function f defined by $f(x) = rac{1}{x}, x
eq 0.$

Watch Video Solution

10. Discuss the continuity of the function f defined by $(x \pm 2)$ if x < 1

$$\left\{egin{array}{cccc} x+2 & ext{ if } x \geq 1 \ x-2 & ext{ if } x>1 \end{array}
ight.$$

11. Find all the points of discontinuity of the function f

defined by
$$\left\{egin{array}{ll} x+2 & ext{if} \;\; x<1 \ 0 & ext{if} \;\; x=1 \,. \ x-2 & ext{if} \;\; x>1 \end{array}
ight.$$

13. Discuss the continuity of the function f given by $\begin{cases} x & ext{if } x \geq 0 \\ x^2 & ext{if } x < 0 \end{cases}$

14. Show that a function p is a polynomial function is continuous.

15. Find all the points of discontinuity of the greatest interger function defined by f(x) = [x], where [x] denote

the greatest integer less than or equal to x.

> Watch Video Solution

16. Prove that every rational function is continuous.

17. Discuss the continuity of sine function.

19. Show that the function defined by $f(x) = \sinig(x^2ig)$ is a

continuous function.

20. Show that the function f defined by $f(x) = |1-x+|x| \mid$ |,

where x is any real number, is a continuous function.

22. Find the derivative of tan(2x + 3).

23. Differentiate $\sin(\cos(x^2))$ with respect to x.

Watch Video Solution

24. Find
$$rac{dy}{dx}$$
 if $x-y=\pi$.

Watch Video Solution

25. Find
$$rac{dy}{dx}$$
, if $y + \sin y = \cos x$.

26. Find the derivative of f given by $f(x) = \sin^{-1} x$ assuming it exists.

29. Differentiate the following w.r.t. x :

 $e^{\,-\,x}$

30. Differentiate the following w.r.t. x :

 $\sin(\log x), x > 0$

Watch Video Solution

31. Differentiate the following w.r.t. x :

 $\cos^{-1}(e^x).$

Watch Video Solution

32. Differentiate the following w.r.t. x :

 $e^{\cos x}$

33. Differentiate
$$\sqrt{\frac{(x-3)(x^2+4)}{(3x^2+4x+5)}}$$
.

34. Differentiate a^x w.r.t. x, where a is a positive constant.

Watch Video Solution

35. Differentiate $x^{\sin x}, \, x > 0$ w.r.t. x.

36. Find
$$rac{dy}{dx}, \hspace{1em} ext{if} \hspace{1em} y^x + x^y + x^x = a^b.$$

37. Find
$$\frac{dy}{dx}$$
, if $x = a \cos \theta$, $y = a \sin \theta$.

Watch Video Solution

38. Find
$$\frac{dy}{dx}$$
, if $x = at^2, y = 2at$.

Watch Video Solution

39. Find
$$\frac{dy}{dx}$$
, if $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$.

40. Find
$$rac{dy}{dx}, ext{ if } x^{rac{2}{3}} + y^{rac{2}{3}} = a^{rac{2}{3}}.$$

D Watch Video Solution

41. Find
$$rac{d^2 y}{dx^2}$$
, if $y=x^3+ an x.$

42. If
$$y = A \sin x + B \cos x$$
, then prove that $\displaystyle rac{d^2 y}{dx^2} + y = 0.$

43. If
$$y=3e^{2x}+2e^{3x}$$
, prove that $\displaystyle rac{d^2y}{dx^2}-5\displaystyle rac{dy}{dx}+6y=0.$

44. If
$$y=\sin^{-1}x$$
, show that $ig(1-x^2ig)rac{d^2y}{dx^2}-xrac{dy}{dx}0.$

46. Verify Mean Value Theorem for the function $f(x) = x^2$

in the interval [2, 4].

1. Differentiate w.r.t.x, the following functions :

$$\sqrt{3x+2}+rac{1}{\sqrt{2x^2+4}}.$$

Watch Video Solution

2. Differentiate w.r.t.x, the following functions :

$$e^{\sec^2 x} + 3\cos^{-1} x.$$

Watch Video Solution

3. Differentiate w.r.t.x, the following functions :

 $\log_7(\log x).$

4. Differentiate the following w.r.t.x.

 $\cos^{-1}(\sin x).$

Watch Video Solution

5. Differentiate the following w.r.t.x.

$$an^{-1} \left(rac{\sin x}{1 + \cos x}
ight)$$

Watch Video Solution

6. Differentiate the following w.r.t.x.

$$\sin^{-1}\biggl(\frac{2^{x+1}}{1+4^x}\biggr)$$

Alatah Midaa Calutian

7. Find f'(x) if $f(x) = (\sin x)^{\sin x}$ for all $0 < x < \pi$.

Watch Video Solution
8. For a positive constant a find
$$\frac{dy}{dx}$$
, where
 $a^{t+\frac{1}{t}}$, and $x = \left(t + \frac{1}{t}\right)^{a}$.
Watch Video Solution

9. Differentiative $\sin^2 xw. r. t. e^{\cos x}$.

1. Prove that the function f(x) = 5x - 3 is continuous at

x=0, at x = -3 and at x = 5.

Watch Video Solution

2. Examine the continuity of the function

 $f(x) = 2x^2 - 1$ at x = 3.

Watch Video Solution

3. Examin the following functions for continuity.

f(x) = x - 5

4. Examin the following functions for continuity.

$$f(x)=rac{1}{x-5}, x
eq 5$$

Watch Video Solution

5. Examin the following functions for continuity.

$$f(x) = rac{x^2 - 25}{x + 5}, x
eq -5.$$

Watch Video Solution

6. Examin the following functions for continuity.

$$f(x) = |x - 5|.$$

7. Prove that the function $f(x) = x^n$ is continuous at x= n,

where n is a positive integer.

Watch Video Solution	

8. Is the function f defined by

 $egin{cases} x & ext{if} \ x \leq 1 \ 5 & ext{if} \ x > 1 \end{cases}$

continuous at x= 0? At x=1? At x=2?.

9. Find all points of discontinuity of f, where f is defined by

$$f(x)=egin{cases} 2x+3 & ext{ if } x\leq 2\ 2x-3 & ext{ if } x>2 \end{cases}.$$

10. Find all points of discontinuity of f, where f is defined by

$$f(x) = egin{cases} |x|+3 & ext{if} \;\; x \leq \; -3 \ -2x & ext{if} \;\; -3 < x < 3 \, . \ 6x+2 & ext{if} \;\; x \geq 3 \end{cases}$$

Watch Video Solution

11. Find all points of discontinuity of f, where f is defined by

$$f(x) = egin{cases} rac{ert x ert}{x} & ext{if} \ x
eq 0 \ 0 & ext{if} \ x = 0 \end{cases}$$

12. Find all points of discontinuity of f, where f is defined by

$$f(x) = egin{cases} rac{x}{|x|} & ext{if} \;\; x < 0 \ -1 & ext{if} \;\; x \geq 0 \end{cases}$$

Watch Video Solution

13. Find all points of discontinuity of f, where f is defined by

$$f(x) = egin{cases} x+1 & ext{if} \;\; x \geq 1 \ x^2+1 & ext{if} \;\; x < 1 \end{cases}$$

Watch Video Solution

14. Find the points of discontinuity of the function f, where

$$f(x) = egin{cases} x^3 - 3, & ext{if} \;\; x \leq 2 \ x^2 + 1, & ext{if} \;\; x > 2 \end{cases}$$

15. Find all points of discontinuity of f, where f is defined by

$$f(x) = egin{cases} x^{10} - 1 & ext{ if } x \leq 1 \ x^2 & ext{ if } x > 1 \end{cases}$$

Watch Video Solution

17. Discuss the continuity of the function f, where f is defined by

$$f(x) = egin{cases} 3 & ext{if} \ \ 0 \leq x \leq 1 \ 4 & ext{if} \ \ 1 < x < 3 \ 5 & ext{if} \ \ 3 \leq x \leq 10 \end{cases}.$$

18. Discuss the continuity of the function f, where f is

defined by

$$f(x) = egin{cases} 2x & ext{if} \;\; x < 0 \ 0 & ext{if} \;\; 0 \leq x \leq 1 \,. \ 4x & ext{if} \;\; x \geq 1 \end{cases}$$

Watch Video Solution

19. Discuss the continuity of the function f, where f is

defined by

$$f(x) = egin{cases} -2 & ext{if} \;\; x \leq \, -1 \ 2x & ext{if} \;\; -1 < x \leq 1 \ 2 & ext{if} \;\; x > 1 \end{cases}$$

20. Find the relationship between a and b so that the

function f defined by

$$f(x) = egin{cases} ax+1-2 & ext{if} \;\; x \leq 3 \ bx+3 & ext{if} \;\; x > 3 \end{cases}$$
 is continuous at x=3.

Watch Video Solution

21. For what value of λ is the function defined by

$$f(x) = egin{cases} \lambdaig(x^2-2xig) & ext{ if } x \leq 0 \ 4x+1 & ext{ if } x>0 \end{cases}$$

continuous at x= 0? What about continuity at x =1?

Watch Video Solution

22. Show that the function defined by $f(x) = \cosig(x^2ig)$ is a

continuous function.

23. Is the function defined by $f(x) = x^2 - \sin x + 5$

continuous at $x = \pi$?

Watch Video Solution

24. Discuss the continuity of the following functions :

 $f(x) = \sin x + \cos x$

Watch Video Solution

25. Discuss the continuity of the following functions :

 $f(x) = \sin x - \cos x$

26. Discuss the continuity of the following functions :

$$f(x) = \sin x . \cos x.$$

Watch Video Solution

27. Discuss the continuity of the cosine, cosecant, secant

and cotangent functions.

View Text Solution

28. Find all points of dicontinuity of f, where

$$f(x) = egin{cases} rac{\sin x}{x} & ext{if} \;\; x < 0 \ x+1 & ext{if} \;\; x \geq 0 \end{cases}$$

29. Determine if f defined by

 $f(x) = egin{cases} x \sin rac{1}{x} & ext{if } x
eq 0 \ 0 & ext{if } x = 0 \end{cases}$ is a continuous function?

Watch Video Solution

30. Examine the continuity of f, where f is defined by

$$f(x) = egin{cases} \sin x - \cos x & ext{ if } x
eq 0 \ -1 & ext{ if } x = 0 \end{cases}.$$

Watch Video Solution

31. Find the values of k so that the function f is continuous at the indicated point.

32. Find the values of k so that the function f is continuous

at the indicated point.

$$f(x)=egin{cases} kx^2 & ext{ if } x\leq 2\ 3 & ext{ if } x>2 \end{cases} ext{ at } x=2.$$

Watch Video Solution

33. Find the values of k so that the function f is continuous

at the indicated point.

$$f(x) = egin{cases} kx+1 & ext{if} \;\; x \leq \pi \ \cos x & ext{if} \;\; x > \pi \end{cases} ext{ at } \;\; x = \pi.$$

34. Find the values of k so that the function f is continuous

at the indicated point.

$$f(x)=\left\{egin{array}{ccc} kx+1 & ext{if} & x\leq 5\ 3x-5 & ext{if} & x>5 \end{array}
ight.$$
at $x=5.$

Watch Video Solution

35. Find the values of a and b such that the function defined

by

$$f(x) = egin{cases} 5 & ext{if} \ x \leq 2 \ ax+b & ext{if} \ 2 < x < 10 & ext{is} \ a \ ext{continuous} \ 21 & ext{if} \ x \geq 10 \end{cases}$$

function.

A.
$$a=3,b=1$$

B. a = 1, b = 1

 $\mathsf{C}.\,a=1,b=2$

D.
$$a = 2, b = 1$$

Answer: D

continuous function.

38. Examine that $\sin|x|$ is a continuous function.

1. Differentiate the functions with respect to x in Exerecises

1 to 8.

 $\sin(x^2+5)$

2. Differentiate the functions with respect to x in Exerecises

1 to 8.

 $\cos(\sin x)$

Watch Video Solution

3. Differentiate the functions with respect to x in Exerecises

1 to 8.

 $\sin(ax+b)$

4. Differentiate the functions with respect to x in Exerecises

1 to 8.

 $\operatorname{sec}(\operatorname{tan}(\sqrt{x}))$

> Watch Video Solution

5. Differentiate the functions with respect to x.

 $\frac{\sin(ax+b)}{\cos(cx+d)}$

Watch Video Solution

6. Differentiate the functions with respect to x in Exerecises

1 to 8.

$$\cos x^3 . \sin^2(x^5).$$

7. Differentiate the functions with respect to x in Exerecises

1 to 8.

$$2\sqrt{\cot\left(x^2
ight)}$$

Watch Video Solution

8. Differentiate the functions with respect to x in Exerecises

1 to 8.

 $\cos(\sqrt{x}).$
9. Prove that the function f given by $f(x) = |x-1|, x \in R$

is not differentiable at x= 1.

f(x) = |x|, 0 < x < 3 is not differentiable at x=1 and x= 2.

Watch Video Solution

Exercise 5 3

1. Find
$$\frac{dy}{dx}$$
 in the following :
 $2x + 3y = \sin x$

2. Find
$$rac{dy}{dx}$$
 in the following :

$$2x + 3y = \sin y.$$

3. Find
$$\frac{dy}{dx}$$
 in the following : $ax + by^2 = \cos y$.

4. Find
$$\displaystyle rac{dy}{dx}$$
 in the following : $xy+y^2= an x+y.$

5. Find
$$\displaystyle rac{dy}{dx}$$
 in the following : $x^2+xy+y^2=100$

6. Find
$$rac{dy}{dx}$$
 in the following : $x^3 + x^2y + xy^2 + y^3 = 81.$

Watch Video Solution

7. Find
$$\frac{dy}{dx}$$
 in the following sin² $y + \cos xy = k$.

.9

8. Find
$$rac{dy}{dx}$$
 in the following : $\sin^2 x + \cos^2 y = 1.$

9. Find
$$rac{dy}{dx}$$
 in the following : $y=\sin^{-1}igg(rac{2x}{1+x^2}igg).$

10. Find
$$rac{dy}{dx}$$
 in the following : $y= an^{-1}igg(rac{3x-x^3}{1-3x^2}igg),\ -rac{1}{\sqrt{3}}< x<rac{1}{\sqrt{3}}.$

11. Find
$$rac{dy}{dx}$$
 in the following : $y = \cos^{-1} igg(rac{1-x^2}{1+x^2} igg), \, 0 < x < 1.$

12. Find
$$rac{dy}{dx}$$
 in the following : $y = \sin^1 igg(rac{1-x^2}{1+x^2} igg), \, 0 < x < 1.$

13. Find
$$rac{dy}{dx}$$
 in the following : $y = \cos^{-1} igg(rac{2x}{1+x^2} igg), \ -1 < x < 1.$

14. Find
$$rac{dy}{dx}$$
 in the following : $y=\sin^{-1}\Bigl(2x\sqrt{1-x^2}\Bigr), rac{1}{\sqrt{2}} < x < rac{1}{\sqrt{2}}.$

15. Find
$$rac{dy}{dx}$$
 in the following : $y = \sec^{-1} igg(rac{1}{2x^2-1} igg), 0 < x < rac{1}{\sqrt{2}}.$

1. Differentiate the following w.r.t. x :

 e^x

7. Differentiate the following w.r.t. x :

$$\sqrt{(3)^{\sqrt{x}}}, x>0.$$

Watch Video Solution

8. Differentiate the following w.r.t. x :

 $\log(\log x), x > 1.$

Watch Video Solution

9. Differentiate the following w.r.t. x :

 $rac{\cos x}{\log x}, x > 0.$

10. Differentiate the following w.r.t. x :

 $\cos(\log x + e^x), x > 0.$

1. Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

 $\cos x. \cos 2x. \cos 3x.$

2. Differentiate the functions given in w.r.t. x.

$$\sqrt{rac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}.$$

4. Differentiate the functions given in Exercises 1 to 11 w.r.t.

х.

 $x^x - 2^{\sin x}$.

5. Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

$$(x+3)^2$$
. $(x+4)^3$. $(x+5)^4$.

6. Differentiate the functions given in w.r.t. x.

 $(\log x)^x + x^{\log x}.$

Watch Video Solution

7. Differentiate the functions given in w.r.t. x.

 $(\log x)^x + x^{\log x}.$

8. Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

 $(\sin x)^x + \sin^{-1}\sqrt{x}$

9. Differentiate the functions w.r.t. x.

 $x^{\sin x} + (\sin x)^{\cos x}.$

10. Differentiate the functions given in Exercises 1 to 11 w.r.t.

Х.

 $(\log x)^{\cos x}$

11. Differentiate the functions w.r.t. x.

$$(x\cos x)^x + (x\sin x)^{\frac{1}{x}}.$$

Watch Video Solution

12. Find
$$\displaystyle rac{dy}{dx}$$
 of the functions. $x^y+y^x=1.$

Watch Video Solution

13. Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15. $x^y = y^x$.

14. Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15. $(\cos x)^y = (\cos y)^x$.

Watch Video Solution

15. Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15. $xy = e^{(x-y)}$.

Watch Video Solution

16. Find the derivative of the functions given by $f(x)=(1+x)ig(1+x^2ig)ig(1+x^4ig)ig(1+x^8ig)$ and hence find f'(1).

17. Differentiate $\left(x^2-5x+8
ight)\left(x^3+7x+9
ight)$ in three ways mentioned below :

- (i) by using product rule
- (ii) by expanding the product to obtain a single polynomial.
- (iii) by logarithmic differentiation.
- Do they all give the same answer?

Watch Video Solution

18. If u, v and w are functions of x, then show that

$$rac{d}{dx}(u.\,v.\,w)=rac{du}{dx}v.\,w+u.\,rac{dv}{dx}.\,w+u.\,vrac{dw}{dx}$$

in two ways-first by repeated application of product rule,

second by logarithmic differentiation.

1. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = 2at^2$, $y = at^4$.

Watch Video Solution

2. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = a \cos \theta, y = b \cos \theta$.

3. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = \sin t, y = \cos 2t$.

Watch Video Solution

4. If x and y are connected parametrically by the equations

given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = 4t, y = \frac{4}{t}$.

5. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = \cos \theta - \cos 2\theta, y = \sin \theta - \sin 2\theta$.

Watch Video Solution

6. If x and y are connected parametrically by the equations, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = a(\theta - \sin \theta), y = a(1 + \cos \theta).$

Watch Video Solution

7. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the

parameter, Find
$$\frac{dy}{dx}$$

 $x = \sin t, y = \cos 2t.$

Watch Video Solution

8. If x and y are connected parametrically by the equations,

without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = a \left(\cos t + \frac{\log \tan(t)}{2} \right) y = a \sin t.$$

Watch Video Solution

9. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = a \sec \theta, y = b \tan \theta$.

10. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta).$

Watch Video Solution

11. If
$$x=\sqrt{a^{\sin^{-1}t}}, y=\sqrt{a^{\cos^{-1}t}}$$
, show that $rac{dy}{dx}=-rac{y}{x}.$

1. Find the second order derivatives of the functions given in

Exercises 1 to 10.

 $x^2 + 3x + 2$

2. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 x^{20}

Watch Video Solution

3. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 $x \cdot \cos x$

5. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 $x^3 \log x$.

6. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 $e^x \sin 5x.$

Watch Video Solution

7. Find the second order derivatives of the functions.

 $e^{6x}\cos 3x.$

Watch Video Solution

8. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 $\tan^{-1} x$.

9. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 $\log(\log x).$

10. Find the second order derivatives of the functions given

in Exercises 1 to 10.

 $\sin(\log x).$

11. If
$$y=5\cos x-3\sin x$$
, prove that $\displaystyle rac{d^2y}{dx^2}+y=0.$

12. If
$$y = \cos^{-1} x$$
, Find $\frac{d^2 y}{dx^2}$ in terms of y alone.

13. If
$$y = 3\cos(\log x) + 4\sin(\log x)$$
, show that

$$x^2y_2 + xy_1 + y = 0.$$

Watch Video Solution

14. If
$$y = Ae^{mx} + Be^{nx}$$
, show that

$$rac{d^2y}{dx^2}-(m+n)rac{dy}{dx}+mny=0.$$

15. If
$$y = 500e^{7x} + 600e^{-7x}$$
, show that $rac{d^2y}{dx^2} = 49y$.

16. If
$$y = Ae^{mx} + Be^{nx}$$
, show that
 $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0.$
Vatch Video Solution

17. If
$$y=\left(an^{-1}x
ight)^2$$
, show that $\left(x^2+1
ight)^2 y_2+2x \left(x^2+1
ight) y_1=2.$

1. Verify Rolle's theorem for the function $f(x)=x^2+2x-8, x\in [-4,2].$

Watch Video Solution

2. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example?

 $f(x) = [x] \;\; ext{ for } \;\; x \in [5,9].$

3. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example?

 $f(x) = [x] \;\; ext{ for } \;\; x \in [-2,2].$

Watch Video Solution

4. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example?

$$f(x) = x^2 - 1 \;\; ext{for} \;\; x \in [1,2].$$

5. If $f: [-5, 5] \to R$ is a differentiable function function and if f'(x) does not vanish anywhere, then prove that $f(-5) \neq f(5).$

Watch Video Solution

6. Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$ in the

interval [a,b], where a=1 and b= 4.

Watch Video Solution

7. Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a,b], where a=1 and b=3. Find all $c \in (1,3)$ for which f'(c)=0`.

Miscellaneous Exercise On Chapter 5

1. Differentiate w.r.t.x the function in Exercises 1 to 11.

$$\left(3x^2-9x+5
ight)^9$$

Watch Video Solution

2. Differentiate w.r.t.x the function.

 $\sin^3 x + \cos^6 x$

3. Differentiate w.r.t.x the function

5. Differentiate w.r.t.x the function in Exercises 1 to 11.

$$rac{\cos^{-1}rac{1}{2}}{\sqrt{2x+7}}, \; -7 < x < 2.$$

View Text Solution

6. Differentiate w.r.t.x the function.

$$\cot^{-1}iggl[rac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}iggr], 0 < x < rac{\pi}{2}.$$

Watch Video Solution

$$(\log x)^{\log x}, x > 1.$$

8. Differentiate w.r.t.x the function in Exercises 1 to 11.

 $\cos(a\cos x + b\sin x)$, for some constant a and b.

9. Differentiate w.r.t.x the function.

$$\left(\sin x - \cos x
ight)^{\sin x - \cos x}, rac{\pi}{4} < x < rac{3\pi}{4}.$$

Watch Video Solution

10. Differentiate w.r.t.x the function.

 $x^x+x^a+a^x+a^a$, for some fixed $a>0 ~~ ext{and}~~x>0.$

Watch Video Solution

11.
$$x^{x^2-3} + (x-3)^{x^2}$$
, for $x > 3$.

$$rac{dy}{dx}, ~~ ext{if}~~y = 12(1-\cos t), x = 10(t-\sin t), ~-rac{\pi}{2} < t < rac{\pi}{2}$$

14. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, for $, -1 < x < 1$,

prove that

 $rac{dy}{dx}=\,-\,rac{1}{\left(1+x
ight)^{2}}.$

15. If
$$(x-a)^2 + (y-b)^2 = c^2$$
, for some $c > 0$, prove that
$$\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$

is a constant independent of a and b.

Watch Video Solution

16. If $\cos y = x \cos(a+y)$, with $\cos a
eq \pm 1$, prove that

$$rac{dy}{dx} = rac{\cos^2(a+y)}{\sin a}$$
17. If
$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$, find $rac{d^2 y}{dx^2}$.

18. If
$$f(x) = \left|x
ight|^3$$
, show that f''(x) exists for all real x and find

it.

Watch Video Solution

19. Derivative of $f(x) = x^n$ is nx^{n-1} for any positive

integer n.

Watch Video Solution

20. Using the fact the that $\sin(A+B) = \sin A \cos B + \cos A \sin B$ and the

differentiation, obtain the sum formula for cosines.

21. Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

22. If
$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$
, prove that $\frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$.

O Watch Video Solution

23. If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$, show that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0.$