©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Pressure

Example

1. A force of 40 N Aisa prananil whose area of
cross section $0.001 \mathrm{~cm}^{2}$. find the pressure on
the tip
2. Toricelli's barometer used mercury. Pascal duplicated it using French wine of density $984 \mathrm{kgm}^{-3}$. Determine the height of the wine column for normal atmospheric pressure.

- Watch Video Solution

3. A cubical block of wood of edge 0.2 m weighing 6.4 kgf floats on water. Find the
depth of immersion. Given, density of water $1,000 \mathrm{kgm}^{-3}$.

- Watch Video Solution

4. The gauge pressure in both the tyres of a bicycle is $6.9 \times 10^{5} \mathrm{~Pa}$. If the bicycle and the person riding it have a combined mass of 90 kg , what is the area of contact of each tyre with the ground?
5. A hydraulic automobile life has input and output pistons with diameters of 10 cm and 30
cm . The life is used to hold up a car with a weight of $1.44 \times 10^{4} N$. What is the force on the input piston?

- Watch Video Solution

6. A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg . The area of cross-section of the piston carrying the
load is $425 \mathrm{~cm}^{2}$. What maximum pressure would the smaller piston have to bear ?

D Watch Video Solution

7. What is the total pressure on the earth back of a scuba diver in a lake at a depth of 10 m , if
the atmospheric pressure is equal to $1.01 \times 10^{5} \mathrm{Nm}^{-2}$
8. What is the force on the scuba diver's back due to water alone, taking the surface of the back to be a rectangle of dimensions $60 \mathrm{~cm} x$ 50 cm .

- Watch Video Solution

9. If a standard atmosphere supports a column
height of exactly 0.76 m of mercury, what is the standard atmospheric pressure in pascal ?

Given that density of mercury $13.6 \times 10^{3} \mathrm{kgm}^{-3}$

- Watch Video Solution

10. What would be the height of a barometer column for one standard atmosphere, if water were used instead of mercury?

D Watch Video Solution

11. The pressure exerted by a person's lungs
can be measured by having the person blow as
hard as possible into one side of a manometer.

If a person blowing into one side of an open-
tube manometer produces a 0.7 m difference
in the heights of the column of water in the manometer arms, what is the lung pressure?

D Watch Video Solution

12. A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the specific gravity of spirit ?

D Watch Video Solution

13. What is the buoyant force on a helium
balloon with a radius of 30 cm in air, if the
density of air is $1.9 \mathrm{kgm}^{-3}$

D Watch Video Solution

14. A sample of milk diluted with pure water bas density of $1032 \mathrm{~kg} / \mathrm{m}^{3}$. If pure milk has density of $1080 \mathrm{~kg} / \mathrm{m}^{3}$. Find the $\%$ of water by volume in milk.

D Watch Video Solution

15. The density of ice is $917 \mathrm{kgm}^{-3}$. What fraction of the volume of a piece of ice will be above water, when floating in fresh water

D Watch Video Solution

16. A piece of pure gold ($\rho=19.3 \mathrm{gcm}^{-3}$) is suspected to be hollow inside. It weighs 38.250
g in air and 33.865 g in water. Calculate the volume of the hollow portion in the gold, if any.
17. A cube of ice floats in a beaker of water.

When the ice melts, the level of water in beaker

D Watch Video Solution

18. A large block of ice 5 m thick has a vertical hole drilled through it and is floating in the middle of a lake. What is the minimum length of the rope required to scoop up a bucket full
of water through the hole? Given that density

$$
\text { of ice }=0.9 x 10^{3} \mathrm{kgm}^{-3}
$$

D Watch Video Solution

19. To what height should a cylindrical vessel be filled with a homogeneous liquid to make the force with which the liquid presses on the sides of the vessel to be equal to the force exerted by the liquid on the bottom of the vessel?
20. Why can a liquid easily change its shape, while a solid cannot?

D Watch Video Solution

21. The bags and suitcases are provided with
broad handles. Explain why.

- Watch Video Solution

22. Why a sharp knife cuts better than a blunt one?

- Watch Video Solution

23. drawing pin having a broad head can be easily fixed on a board. explain how
24. the sports boot for soccer and hockey have studs on their soals. Why?

D Watch Video Solution

25. While sking on snow, a skier wears skis
addition to the shoes. why?

D Watch Video Solution
26. What is one torr of pressure?

- Watch Video Solution

27. What is one bar?

- Watch Video Solution

28. write the relation between torr and millibar.

- Watch Video Solution

29. Why water does not come out of a dropper unless its rubber head is pressed hard?

D Watch Video Solution

30. The blood pressure in humans is usually
taken using the arm. suppose the pressure reading where taken on the calf of the leg of a standing position, would there be a difference?

- Watch Video Solution

31. Why liquids exert pressure on the walls of the containing vessel?

D Watch Video Solution

32. a storage tank may not be made as thick as near its bottom. Why?

D Watch Video Solution

33. The three vessels shown in the figure are
filled to the same height with water. The three
versions of the same base area. In which vessel
will the force on the base be minimum?

- Watch Video Solution

34. In the vessels shown in the figure equal volumes water are poured. In which person
will the force on the base be maximum?

- Watch Video Solution

35. Which is a practical unit of pressure in meteorological science?

- Watch Video Solution

36. On what factors, the atmospheric pressure at a place depends?

D Watch Video Solution

37. What does the sudden fall, gradual fall and gradual increase in barrometer level indicate?
38. How is barometric height is altered, if a
drop of water is introduced in a Mercury barometer tube?

D Watch Video Solution

39. What is principle of floatation?

- Watch Video Solution

40. one small and one big piece of cork are pushed below the surface of water. Which will have greater tendency to rise swiftly?

D Watch Video Solution

41. A cork is floating in a water tube. What is
the apparent weight of the cork?

- Watch Video Solution

42. A vessel containing water is equalized on a balance and then the end of a wooden rod is im rod is immersed in the water, its other end being held by hand What additional weight should be placed on the other pan to restore the equilibrium if the volume of the submerged part of the wood is $50 \mathrm{~cm}^{3}$?

- Watch Video Solution

43. Why it may be difficult to stop bleeding from a cut in the body at higher altitude?

D Watch Video Solution
44. Sleepers are laid below rails to

- Watch Video Solution

45. To empty an oil tin, two holes are made.

Why?

- Watch Video Solution

46. state and explain Pascal's law

- Watch Video Solution

47. In adult man,normal blood pressure is:

- Watch Video Solution

48. In a mercury barometer, at sea level, the normal pressure of the air (one atmosphere)
acting on the mercury in the dish supports a

76 cm column of mercury in a closed tube. If
you go up in the air, until the density has
fallen to half its sea level value, what height of mercury column would you expect?

D Watch Video Solution

49. Water cannot be used in place of mercury
in a barometer. Why?

D Watch Video Solution
50. Why is mercury used in thermometer ?

D Watch Video Solution

51. Straws are used to take soft drinks. Why?
52. The passengers used to remove ink from their fountain pens, while travelling by an aeroplane. Why?

- Watch Video Solution

53. Cork is only one fourth as dense water.

Could you lift a sphere of cork one metre in diameter?
54. How is an iron ship able to float where as an iron needle sinks?
(Watch Video Solution
55. Why is it easier to swim in sea water than in rise water?

- Watch Video Solution

56. A swimmer floats face up motionless, the
whole of his body being submerged in the
water except for a small part of the face. The swimmer weighs 75 kgf . Find the volume of the body of the swimmer.

D Watch Video Solution

57. The force required by a man to move his
limbs immersed in water is smaller than the
force for the same movement in air. Explain, why.

D Watch Video Solution

58. A balloon filled with helium does not rise in air indefinitely but halts after a certain height
(neglect winds). explain why.

- Watch Video Solution

59. The mass of the earth has been calculated to be $5.98 \times 10^{24} \mathrm{~kg}$ and its mean radius as $6.38 \times 10^{6} \mathrm{~m}$. (a) What is the average density of the earth.

- Watch Video Solution

60. The mass of the earth has been calculated
to be $5.98 \times 10^{24} \mathrm{~kg}$ and its mean radius as
$6.38 \times 10^{6} \mathrm{~m}$. Would you expect the average
density of the material near the surface to be
same as the average density near the centre of the earth ? Give reasons.

D Watch Video Solution

61. A boat carrying a number of large stones is
floating in a water tank. what will happen to
the level of water in the tank if the stones are unloaded into water?
62. A man is sitting in a boat which is floating in a pond. if the man drinks some water from the pond what will happen to the level of water in the pond?

D Watch Video Solution

63. A cubical body floats on mercury with 0.25
of its volume below the surface. What fraction
of the volume of the body will be immersed in
the mercury, if a layer of water poured on top
of the mercury covers the body completely?
Given, density of mercury- $13.6 \times 10^{3} \mathrm{kgm}^{-3}$ and density of water $=10^{3} \mathrm{kgm}^{-3}$

D Watch Video Solution

64. In accurate weighing, a correction is
usually introduced to account for weight
losses in air for the body being weighed and for the set of small weights. In what case may
this correction be dispensed without impairing the accuracy of weighing?

Watch Video Solution

65. Ice floats in water with about nine-tenths of its volume submerged. What is the fractional volume submerged for an iceberg
floating on a fresh water lake of a (thypothetical) planet, whose gravity is ten times that of the earth?

- Watch Video Solution

66. What is the fractional volume submerged of an ice cube in a pail of water placed in a enclosure which is freely falling under gravity?

- Watch Video Solution

67. The two thigh bones (femurs), each of cross-sectional area $10 \mathrm{~cm}^{2}$ support the upper part of a human body of mass 40 kg . Estimate the average pressure sustained by the femurs.
68. How much pressure will a man of weight 80
kgf exert on the ground, when he is lying.

Given that area of the body of the man is
$0.6 \mathrm{~m}^{2}$ and that of a foot is $80 \mathrm{~cm}^{2}$

D Watch Video Solution

69. How much pressure will a man of weight 80 kgf exert on the ground, when he is standing on the feet? Given that area of the body of the man is $0.6 \mathrm{~m}^{2}$ and that of a foot is $80 \mathrm{~cm}^{2}$
70. Atmospheric pressure is $1.01 \times 10^{5} \mathrm{~Pa}$. How large a force does the air in a room exert on the inside of a window pane that is 40 cm x 80 cm ?

- Watch Video Solution

71. The neck and bottom of a bottle are 2 cm
and 20 cm in diameter respectively. If the cork
is pressed with a force of 1-2 kgf in the neck of
the bottle, calculate the force exerted on the bottom of the bottle.

D Watch Video Solution

72. In a car lift, compressed air exerts a force
F_{1} on a small piston having a radius of 5 cm .

This pressure is transmitted to the second piston of radius 15 cm . If the mass of the car to be lifted is $1,350 \mathrm{~kg}$, what is F_{1} ?
73. The density of the atmosphere at sea level is $1.29 \mathrm{kgm}^{-3}$. Assume that it does not change with altitude. Then, how high would the atmosphere extend?

- Watch Video Solution

74. What is the total pressure on the earth back of a scuba diver in a lake at a depth of

10 m , if the atmospheric pressure is equal to
$1.01 \times 10^{5} \mathrm{Nm}^{-2}$
75. A hole of area $5 \mathrm{~cm}^{2}$ is formed in the side of a ship 3 m below the water level. What minimum force is required to hold on a patch covering the hole from the inside of the ship?

- Watch Video Solution

76. A column of water 40 cm high supports a

31 cm column of an unknown liquid. What is
the density of the liquid?

- Watch Video Solution

77. What will be the length of mercury column
in a barometer tube, when the atmospheric pressure is 75 cm of mercury and the tube is inclined at an angle of 60° to the vertical?

D Watch Video Solution

78. How high would water rise in the pipes of a building, if the water pressure gauge shows the pressure at the ground floor to be 270 kPa .

D Watch Video Solution

79. The manual of a car instructs the owner to
inflate the tyres to a pressure of 200 kPa . What
is the recommended absolute pressure?
80. The manual of a car instructs the owner to inflate the tyres to a pressure of 200 kPa . What is the recommended absolute pressure?

- Watch Video Solution

81. The manual of a car instructs the owner to
inflate the tyres to a pressure of 200 kPa . If
after the required inflation of the tyre, the car
is driven to a mountain peak, where the atmospheric pressure is 10% below that at sea level, what will the tyre gauge read?

- Watch Video Solution

82. A body weighs 25 gf in air and 20 gf in water. What would be its weight in a liquid of density $0.8 \mathrm{gcm}^{-3}$?

- Watch Video Solution

83. A piece of cork of density $250 \mathrm{kgm}^{-3}$ is tied with a lump of metal of density $8 \times 10^{3} \mathrm{~kg}$ mand of mass 0.024 kg . The combination just
floats in water. Calculate the volume and the mass of the cork.

D Watch Video Solution

84. A piece of metal of mass 17 g is tied to a cork of mass 5 g and the two remain suspended under water without sinking, when lowered into water. If the density of cork is $0.25 \mathrm{gcm}^{-3}$ find the density of metal.

D Watch Video Solution

85. A metal cube of 5 cm side and relative density 9 is suspended by a thread so as to be completely immersed in a liquid of density $1.2 \times 10^{3} \mathrm{kgm}^{-3}$. Find the tension in the thread.

D Watch Video Solution

86. The weight of a body in water is one-third of its weight in air. What is the density of the material of the body?
87. A piece of iron weighs 400 gf in water.

Determine its volume. Given that density of iron $=7.8 \mathrm{gcm}^{-3}$

D Watch Video Solution

88. A cork of density $0.15 \mathrm{gcm}^{-3}$ floats in water
with $10 \mathrm{~cm}^{3}$ of its volume above the surface of
water. Calculate the mass of the cork.

D Watch Video Solution
89. The density of ice is $917 \mathrm{kgm}^{-3}$. What friction of ice lies below water? The density of sea water is $1,024 \mathrm{kgm}^{-3}$. What fraction of iceberg do we see, assuming that it has the same density as ordinary ice $\left(917 \mathrm{kgm}^{-3}\right)$.

- Watch Video Solution

90. A body floats with $\frac{2}{5}$ th of its volume above the surface of water. Calculate the density of the material of the body.

- Watch Video Solution

91. A piece of iron floats in mercury. Given that the density of iron is $7.8 x 10^{3} \mathrm{kgm}^{-3}$ and that of mercury is $13.6 \times 10^{\wedge} 3 \mathrm{~kg} \mathrm{~m}-3$, calculate the fraction of the volume of iron piece that remains outside the mercury.

- Watch Video Solution

92. The densities of sea water and ice are $1130 \mathrm{kgm}^{-3}$ and $920 \mathrm{~kg} \mathrm{~m}^{\wedge}-3^{`}$. What fraction of the volume of an iceberg will float above the sea level? [Ans. 0-186]

D Watch Video Solution

93. A piece of wood of relative density 0.25
floats in a pail containing oil of relative density
0.81. What is the fraction of volume of the
wool above the surface of the coil?
94. A copper ball with a hollow centre weighs

264 gf in air and 221 gf in water. Determine the volume of the hollow portion of the ball.

Given, the density of copper $=8.8 \mathrm{gcm}^{-3}$

D Watch Video Solution

95. What is the absolute and gauge pressure
of the gas above the liquid surface in the tank
shown in Fig. Given that density of oil =
$820 \mathrm{kgm}^{-3}$,

- Watch Video Solution

96. When a body of mass 240 kg is placed on
an iceberg floating in sea water, it is found
that the iceberg just sinks. What is the mass of
the iceberg ? Take the relative density of ice as
0.9 and that of sea water as 1.02 .

D Watch Video Solution

97. A vessel contains oil of density 800 kg
mover mercury of density $13,600 \mathrm{kgm}^{-3}$. A
homogeneous sphere floats with half of its
volume immersed in mercury and other half in
the oil. Find the density of the material of the sphere.

D Watch Video Solution

98. A cubical body floats on mercury with 0.25
of its volume below the surface. What fraction
of the volume of the body will be immersed in
the mercury, if a layer of water poured on top
of the mercury covers the body completely?

Given, density of mercury- $13.6 \times 10^{3} \mathrm{kgm}^{-3}$ and density of water $=10^{3} \mathrm{kgm}^{-3}$

D Watch Video Solution

99. What must the ratio of volumes of water and alcohol be for their mixture to have a density of $900 \mathrm{kgm}^{-3}$? When the alcohol is mixed with the water, the volume of the mixture diminishes to $0-97$ of the initial volume of the water and the alcohol. Given that the density of alcohol $=795 \mathrm{kgm}-3$

Watch Video Solution

100. A cube of wood floating in water supports
a 200 g mass resting at the centre of its top
face. When the mass is removed, the cube rises 2 cm . Find the volume of the cube.

D Watch Video Solution

101. The volume of an air bubble becomes 8
times the original volume in rising from the bottom of a lake to its surface. If the
barometric height is 0.76 m of mercury, what is
the depth of the lake? Given that density of mercury is $13.6 \times 10^{3} \mathrm{kgm}^{-3}$

D Watch Video Solution

102. A balloon filled with hydrogen has a volume of 1,000 litres and its mass is 1 kg .

What would be the volume of the block of a very light material, which it can just lift? One
litre of the material has mass of 91.3 g . Given that density of air=1.3glitre ${ }^{-1}$

Watch Video Solution

Exercise

1. Define thrust and pressure. Give their units.

Show that when a liquid is in equilibrium, forces acting on the liquid must be perpendicular to its free surface.

D Watch Video Solution

2. Define thrust and pressure. Give their units.

Show that when a liquid is in equilibrium, forces acting on the liquid must be perpendicular to its free surface.

- Watch Video Solution

3. state and explain Pascal's law

- Watch Video Solution

4. State Pascal's law as to the transmission of pressure in a liquid. How does it get changed in the presence of gravity?

D Watch Video Solution

5. State Pascal's law and write a short note on hydraulic lift.

D Watch Video Solution

6. Discuss Hydraulic lift.

D Watch Video Solution

7. What is the principle of hydraulic brakes ?

Explain its working with a suitable diagram.

- Watch Video Solution

8. Discuss Hydraulic lift.
9. Explain the construction and working of a hydraulic brake.

- Watch Video Solution

10. What is the principle of hydraulic brakes?

Explain its working with a suitable diagram.

- Watch Video Solution

11. Derive an expression for the pressure exerted by a liquid column.

D Watch Video Solution
12. What is the unit of torr?

D Watch Video Solution

13. Discuss the variation in atmospheric pressure with altitude.

- Watch Video Solution

14. Derive an expression for the pressure exerted by a liquid column.

D Watch Video Solution

15. State Archimedes' principle.

- Watch Video Solution

16. State Archimedes' principle.

D Watch Video Solution

17. State Archimedes' principle.

D Watch Video Solution
18. What are laws of floatation?
19. Discuss two practical applications of Pascal's law.

D Watch Video Solution
20. Explain the working of the following along with the underlying principle:hydraulic lift
21. What is the principle of hydraulic brakes?

Explain its working with a suitable diagram.

- Watch Video Solution

22. Explain, how Archimedes' principle may be used to find the volume of a body
23. Explain, how Archimedes' principle may be used to find to determine the condition of floatation of a body.

D Watch Video Solution

24. Explain, how Archimedes' principle may be
used to find to determine the condition of
floatation of a body.

D Watch Video Solution

