© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Rotational Motion

Example

1. show that the vectors $\vec{A}=\hat{i}-5 \hat{j}$ and
$\vec{B}=2 \hat{i}-10 \hat{j}$ are parallel to each other
2. The motor of an engineis rotating about its axis with an angular velocity of 120 RPM. it comes to rest in 10 seconds, after being switched off. assuming counts in deceleration calculate the number of revolutions made by it before coming to rest.

- Watch Video Solution

3. In order to open a door, a boy applies a force of

50 N on its handle in a direction normal to the plane of the door. If the applied force acts at a
distance of 0.6 m from the hinges, find the torque of the force.

- Watch Video Solution

4. In hydrogen atom, electron revolves in a circular orbit of radius 0.53×10^{-10} with a velocity of $2.2 \times 10^{6} \mathrm{~ms}^{-1}$. If the mass of electron is $9 \times 10^{-31} \mathrm{~kg}$, find the angular momentum
5. \vec{A} and \vec{B} are two vectors and θ is the angle between them. If $|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B})$, then find the value of θ

- Watch Video Solution

6.

Show
that
$(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})=2(\vec{B} \times \vec{A})$
7. If $\vec{A} \times \vec{B}=\overrightarrow{0}$ and $\vec{A} \cdot \vec{B}=\overrightarrow{0}$, does it implies that one of the vectors \vec{A} or \vec{B} must be null vector?

- Watch Video Solution

8. The spin dryer of a washing machine revolving at

15 RPS slows down to 5 RPS while making 50 revolutions. find angular acceleration
9. The spin dryer of a washing machine revolving at

15 RPS slows down to 5 RPS while making 50 revolutions. find angular acceleration

- Watch Video Solution

10. The radius of earth's orbit is $1.5 \times 10^{11} \mathrm{~m}$ and its period of revolution is $3.2 \times 10^{7} \mathrm{~s}$. Find the magnitude of the velocity
11. The radius of earth's orbit is $1.5 \times 10^{11} \mathrm{~m}$ and its period of revolution is $3.2 \times 10^{7} \mathrm{~s}$. Find the acceleration of the earth in its motion around sun.

- Watch Video Solution

12. A force of 36 N is applied to a particle located at
0.15 m from the axis of rotation. what is the magnitude of the torque about this Axis if the angle between the direction of the applied force and the radius vector is 60°
13. A force of 36 N is applied to a particle located at
0.15 m from the axis of rotation. what is the magnitude of the torque about this Axis if the angle between the direction of the applied force and the radius vector is is 90°

D Watch Video Solution

14. A force of 36 N is applied to a particle located at
0.15 m from the axis of rotation. what is the magnitude of the torque about this Axis if the angle between the direction of the applied force and the radius vector is 120°

- Watch Video Solution

15. In our bodies, torque produced due to the contraction of the muscles cause some bones move at the joints. For example in lifting a load with the hand, torque is applied by the bicep muscles on the elbow. If the axis of rotation through the elbow point and the muscle attached is 4 cm from the joint, find the magnitudes of the muscle torques in the two cases, if the muscle exerts a force of 600 N ?
16. A wheel of grind stone has applied at its axle 2
cm in radius a constant tangential force of 600 N .
Find the torque acting on it

- Watch Video Solution

17. A wheel of grind stone has applied at its axle 2
cm in radius a constant tangential force of 600 N .
Find the angular momentum acquired after 8 s .
18. The earth revolves round the sun in an orbit of
radius $1.5 \times 10^{11} \mathrm{~m}$ once in a year. Calculate the orbital angular monentum of the earth, if its mass is $6 \times 10^{24} \mathrm{~kg}$

- Watch Video Solution

19. An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ revolves in a circle of radius $0.53 \AA$ around the nucleus of hydrogen with a velocity of $2.2 \times 10^{6} \mathrm{~ms}^{-1}$. Show that its angular momentum is equal to $\frac{h}{2} \pi$, where h is Plank's constant of value $6.6 \times 10^{-34} \mathrm{Js}$.
20. Show that the angular momentum of a satellite of mass M_{s}, revolving round the earth having mass M_{e}, in an orbit of radius r is equal to $\left[G M_{e} M_{s}^{2} r\right]^{\frac{1}{2}}$

- Watch Video Solution

21. A particle of mass $m=2 \mathrm{~kg}$ is moving with a uniform speed $3 \sqrt{2} m s^{-1}$ in the XOY plane along the line $y=x+6$. Find the magnitude of the angular momentum of the particle about the origin.
22. A painter weighing 60 kg paints the wall of a house, while standing on a scafford (a criss-cross stand made of steel bars and a long wooden board placed on it) as shown in Fig. If the mass of the board is 15 kg , how close to its end can the painter stand without risking the board to topple over?

23. Label 1 and 2 in the given figure.

- Watch Video Solution

24. An uniform steel bar of mass 5 kg and length 1.5
is supported at its two ends. a mass of 2 kg is
suspended from a point 0.3 m from the left end of
the bar determine the reactions at each end of the

Steel bar

- Watch Video Solution

25. Two boys weighing 40 kg and 50 kg are sitting on either side of a wooden plank at distances 4.5 m and 1.5 m respectively from the fulcrum coinciding with the centre of gravity of the plank. Where must a third boy weighing 35 kg sit to secure balance ?

- Watch Video Solution

26. A uniform ladder of length 6 m and weight 20
kgf rests against a smooth wall making an angle of
60° with the floor. A man weighing 50 kgf is
standing on the ladder 4 m from its bottom. Find the reactions of the wall and the floor.

D Watch Video Solution

27. There is a rectangular plate of mass M kg of dimensions (axxb). The plate is held in horizontal position by striking n small balls each of mass m per unit area per unit time. These are striking in the shaded halt region of the plate. The balls are colliding elastically with velocity v. What is v ? It is given $\mathrm{n}=100, \mathrm{M}=3 \mathrm{~kg}, \mathrm{~m}=0.01 \mathrm{~kg}, \mathrm{a}=1 \mathrm{~m}, \mathrm{~b}=2 \mathrm{~m}$ and
$` \mathrm{~g}=10 \mathrm{~ms}^{\wedge}-1$.

- Watch Video Solution

28. A U shaped tube contains a liquid of density ρ
and it is rotated about the line as shown in figure.
Find the difference in the levels of the liquid
column.

- Watch Video Solution

29. A particle of mass m is projected with velocity v making an angle of 45° with the horizontal .The magnitude of the angular momentum of the projectile about the point of projection when the particle is at maximum height is :
30. A rod of weight w is supported by two parallel knife edges A and B and is equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the road is at a distance x from A . Find the normal reactions at the knife edges A and B.

D Watch Video Solution

31. Define the cross product of two vectors
32. Show that $\vec{A} \times \vec{A}=0$

- Watch Video Solution

33. What is the condition for two vectors to be parallel to each other?

- Watch Video Solution

34. If $\vec{A} \times \vec{B}=0$ what can be said about the vectors \vec{A} and \vec{B} ?
35. The angle between vectors \vec{A} and \vec{B} is 60°.

What is the ratio between $\vec{A} \cdot \vec{B}$ and $|\vec{A} \times \vec{B}|$

- Watch Video Solution

36. Do the internal forces affect the motion of a system under the effect of some external force?

- Watch Video Solution

37. What do you mean by a rigid body?
38. What is meant by torque in rotational motion?

D Watch Video Solution

39. What is torque ? Give its S.I. unit.

- Watch Video Solution

40. Define angular momentum. Give its SI unit.
41. Which physical quantities are represented by the Rate of change of angular momentum.

- Watch Video Solution

42. Which physical quantities are expressed by the following? Moment of lineaer momentum.

D Watch Video Solution

43. If the torque acting on a particle about the origin is zero, what can we say about the angular momentum of the particle about the origin?

- Watch Video Solution

44. Can a torque be balanced by a single force?

Explain

- Watch Video Solution

45. Explain law of conservation of angular momentum.

- Watch Video Solution

Exercise

1. What are the properties of cross product?

- Watch Video Solution

2. What is the condition for two vectors to be parallel to each other?

- Watch Video Solution

3. Find the condition for two vectors to be perpendicular to each other

- Watch Video Solution

4. Show that the angle between $\vec{A}=\hat{i}-5 \hat{j}$ and $\vec{B}=2 \hat{i}-10 \hat{j}$ is zero
5. If $\vec{A} \times \vec{B}=\vec{C} \times \vec{B}$ show that \vec{C} need not be equal to \vec{A}

- Watch Video Solution

6. If $\vec{A} \times \vec{B}=\vec{C} \times \vec{B}$. When will \vec{C} be equal to \vec{A} ?

D Watch Video Solution
7. Explain, why it is difficult to open a door by pushing or pulling it near the hinge.

- Watch Video Solution

8. While turning the page of a book, we usually
apply force perpendicular to the plane of the page off the page at the farthest end. explain

- Watch Video Solution

9. Torque and work are both defined as force times distance. How do they differ?

- Watch Video Solution

10. A particle moves in a circular path with decreasing speed. what happen to its angular momentum?
11. A ladder is more apt to slip when you are high up on its than when you are just begin to climb.

Why?

- Watch Video Solution

12. A planet revolves around the sun under the effect of gravitational force exerted by the sun. Why
is the torque on the planet due to the gravitational
force zero ?
13. A projectile acquires angular momentum about its point of projection during its flight. Is its angular momentum constant over the entire orbit?

- Watch Video Solution

14. What do you mean by mechanical equilibrium of a rigid body?

- Watch Video Solution

15. State the condition for the rigid body to be in mechanical equilibrium.

- Watch Video Solution

16. Why does the speed of a planet vary in its orbit around the sun ?

- Watch Video Solution

17. A heavenly body revolves around a massive star in a highly elliptical orbit..Is its angular momentum constant over the entire orbit?
18. Explain vector product of two vectors. Mention its any two properties.

- Watch Video Solution

19.

Given
that
$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$ and $\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$
. Find $\vec{A} \times \vec{B}$

- Watch Video Solution

20. Derive an expression for the area of a triangle in terms of the cross-product of two vectors
representing the two sides of the triangle.

- Watch Video Solution

21. Starting from Newton's second law of motion, derive the equation of motion of a particle (capable of rotation about an axis) on which a torque r is acting. Assume that the motion of the particle is in a plane.

- Watch Video Solution

22. Define the term torque. Show that torque is given by the product of the force and its lever arm.

- Watch Video Solution

23. Derive expression for torque in cartesian coordinate system.

- Watch Video Solution

24. Deduce the relation between torque and moment of inertia.
25. Derive expression for torque in cartesian coordinate system.

- Watch Video Solution

26. Derive expression for the torque acting on a system of n-particles
27. Obtain the expression for angular momentum of
a particle moving in XY-plane from the expression
for the torque $\tau=x F_{y}-y F_{x}$ acting on it. How does it lead to define angular momentum of a particle as the product of its linear momentum and perpendicular distance from the axis of rotation

D Watch Video Solution

28. Derrive expression for the angular momentum of a system in cartesian coordinates
29. Derive an expression for rotational kinetic energy and hence define moment of inertia.

- Watch Video Solution

30. Prove that the time rate of change of the angular momentum of a particle is equal to the torque acting on it.
31. Derive a relation between angular momentum and torque.

- Watch Video Solution

32. Define angular momentum. What are its units?

Establish the relation between angular momentum
and torque.

- Watch Video Solution

33. Define torque and the angular momentum.

Show that $\vec{\tau}=\frac{d \vec{L}}{d t}$

- Watch Video Solution

34. Obtain the relation between the torque and the angular momentum.

- Watch Video Solution

35. Derive the relation between the torque and the angular momentum. Hence obtain and state the
law of conservation of angular momentum.

- Watch Video Solution

36. State and prove the principle of momentum.

- Watch Video Solution

37. State and explain the law of conservation of angular momentum.
38. State law of conservation of angular momentum. Illustrate it with the help of two examples.

- Watch Video Solution

39. State the law of conservation of angular momentum.
40. Why angular speed of rotation of earth around the sun the increases, when it comes near the sun?

- Watch Video Solution

41. Define angular momentum. Prove that angular momentum of a particle is equal to twice the product of its mass and areal velocity.
42. Deduce Kepler's second law of planetary motion from the law of conservation of angular momentum.

- Watch Video Solution

43. Explain the vector product of two vectors

- Watch Video Solution

44. Show by example that the vector product does
not obey commutative law
45. Explain vector product of two vectors. Mention its any two properties.

- Watch Video Solution

46. Show by example that the cross product of vectors obeys distributive law
47. Show that the cross product of two vectors \vec{A} and \vec{B} varies from 0 to $A B$.

- Watch Video Solution

48. Define torque and the angular momentum.

Show that $\vec{\tau}=\frac{d \vec{L}}{d t}$

- Watch Video Solution

49. Derive expression for torque in cartesian coordinate system.

- Watch Video Solution

50. Explain work done by a variable force.

- Watch Video Solution

51. Show that the torque at a point is equal to the product of the magnitude of force and the moment arm (lever arm) of the force
52. Show that the torque at a point is equal to the product of the magnitude of force and the moment arm (lever arm) of the force

- Watch Video Solution

53. Derrive expression for the angular momentum of a system in cartesian coordinates
54. Derrive expression for angular momentum of a system in polar co-ordinate. Hence prove that angular momentum= linear momentum $x x$ perpendicular distance from axis of rotation

- Watch Video Solution

55. Define angular momentum. Give its SI unit.

- Watch Video Solution

56. Show that the angular momentum is equal to twice the product of mass and real velocity.

- Watch Video Solution

57. Show that the area of the parallelogram with diagonals \vec{a} and \vec{b}, is $\frac{1}{2}|\vec{a} \times \vec{b}|$.

- Watch Video Solution

58. Prove that
$|\vec{A} \cdot \vec{B}|^{2}+|\vec{A} \times \vec{B}|^{2}=A^{2} B^{2}$

- Watch Video Solution

59.

Show
that
$(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})=2(\vec{B} \times \vec{A})$

- Watch Video Solution

60. Given that $\vec{A} \times \vec{B}-\vec{B} \times \vec{C}=\overrightarrow{0}$. If \vec{A}, \vec{B} and \vec{C} are not null vectors. Find the value of $\vec{C} \times \vec{A}$

- Watch Video Solution

61. show that the vectors $\vec{A}=2 \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{B}=-6 \hat{i}+9 \hat{j}+3 \hat{k}$ are parallel

- Watch Video Solution

62. show that the vectors $\vec{A}=\hat{i}-5 \hat{j}$ and $\vec{B}=2 \hat{i}-10 \hat{j}$ are parallel

- Watch Video Solution

63. show that the vectors $\vec{A}=6 \hat{i}+9 \hat{j}-12 \hat{k}$ and $\vec{B}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ are parallel
64. If $\vec{A}=4 \hat{i}-5 \hat{j}+6 \hat{k}$ and $\vec{B}=3 \hat{i}+6 \hat{j}-7 \hat{k}$, find $\vec{A}+\vec{B}$

- Watch Video Solution

65. A vector \vec{A} has magnitude 6 units and is directed along positive x axis. another vector \vec{B} has magnitude four units and lies in xy plane making an angle of 30° with positive x axis and then angle of 60° with positive y axis. find the product $\vec{A} \times \vec{B}$
66. find the unit vector perpendicular to each of the
vectors $\vec{A}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{B}=2 \hat{i}-2 \hat{j}+4 \hat{k}$
and the angle between them.

- Watch Video Solution

67. A flywheel rotating at 420 RPM slows down at a constant rate of $2 \mathrm{rads}^{-2}$. what time is required to stop the flywheel?
68. A constant torque is acting on a wheel. if starting from rest the wheel makes n rotations in t seconds. show that the angular acceleration is given by $\alpha=\frac{4 \pi n}{t^{2}} r^{2} a d s^{-1}$

D Watch Video Solution

69. On the application of a constant torque, a wheel is turned from rest through 400 radians in 10s. Find angular acceleration
70. On the application of a constant torque, a wheel is turned from rest through 400 radians in 10s. Find angular acceleration

- Watch Video Solution

71. The angular velocity of a wheel increases form

100 rps to 300 rps in 10 sec .The number of revolutions made during this time is :

- Watch Video Solution

72. A grinding stone of radius $2 m$ revolving at 120 rpm accelerates to 660 r.p.m.in 9 seconds. Find the angular acceleration.

- Watch Video Solution

73. A grinding stone of radius 2 m revolving at 120 rpm accelerates to 660 r.p.m.in 9 seconds. Find the angular acceleration.
74. The earth revolves round the sun in an orbit of
radius $1.5 \times 10^{11} \mathrm{~m}$ once in a year. Calculate the orbital angular monentum of the earth, if its mass is $6 \times 10^{24} \mathrm{~kg}$

- Watch Video Solution

75. the moon is is $3.824 \times 10^{\wedge} 5 \mathrm{~km}$ from the centre of
earth and requires 27.3 days for a revolution. what is the centripetal acceleration?
76. the moon is is $3.824 \times 10^{\wedge} 5 \mathrm{~km}$ from the centre of earth and requires 27.3 days for a revolution. what is the centripetal acceleration?

- Watch Video Solution

77. a wheel of radius 1 m starts from rest and moves
with an acceleration of $3 \mathrm{rads}^{-1}$. Find angular
displacement of the wheel after 4 seconds

- Watch Video Solution

78. a wheel of radius 1 m starts from rest and moves
with an acceleration of $3 \mathrm{rads}^{-1}$. Find angular displacement of the wheel after 4 seconds. What is the centripetal acceleration at a point on its rim at that instant.

- Watch Video Solution

79. A disc of radius 0.5 m is rotating about an axis passing through its centre and perpendicular to its plane. A tangential force of 2000 N is applied to bring the dics to rest 2 s . Calculate its angular momentum.
80. A torque of $20 \mathrm{~N}-\mathrm{m}$ is applied on a wheel initially
at rest. Calculate the angular momentum of the wheel after 3 sec

- Watch Video Solution

81. Calculate angular momentum to Neptune about the sun. Given, the distance of neptune from sun is
$5 \times 10^{12} \mathrm{~m}$ mass of neptune $=10^{27} \mathrm{Kg}$ and period of revolution around the sun $=5 \times 10^{9} s$
82. a uniform metre rod weighing 50 grams is
supported at its ends and two masses of 20 g and

30 g are suspended at 20 and 90 cm marks respectively. Find the reaction of the supports

- Watch Video Solution

83. An iron rod of weight 50 kgf and a weight of 10
kgf is attached at one end. it balances itself at a point 6 m from the same end. find the length of the iron road
84. a uniform metre rod weighing 50 grams is supported at its ends and two masses of 20 g and 30 g are suspended at 20 and 90 cm marks respectively. Find the reaction of the supports

- Watch Video Solution

85. A uniform ladder of length 6 m and weight 20
kg rests against a smooth wall making an angle of
60° with the floor. A man weighing 50 kgf is
standing on the ladder 4 m from its bottom. Find the reactions of the wall and the floor.

- Watch Video Solution

86. A ladder rest at an angle θ to the horizontal
with the ends resting on a smooth floor and against a smooth vertical wall, the lower end being attached by string to the junction of the wall and the floor. Find the tension in the string in terms of weight of the ladder

- Watch Video Solution

