©゙doubtnut
 India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Surface Tension

Example

1. Calculate the work done in blowing up a soap bubble from an initial surface area of $0.50 \mathrm{~cm}^{2}$ to a final surface area of $1.10 \mathrm{~cm}^{2}$. The surface tension of soap solution is $30 d y \neq \mathrm{cm}^{-1}$

- Watch Video Solution

2. What is the pressure inside the drop of mercury of radius 3.00 mm at room temperature ? Surface tension of mercury at that temperature (
$20^{\circ} \mathrm{C}$) is $4.65 \times 10^{-1} \mathrm{Nm}^{-1}$ The atmospheric pressure is $1.01 \times 10^{5} \mathrm{~Pa}$. Also give the excess pressure inside the drop.

- Watch Video Solution

3. Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside ? Surface tension of mercury at the temperature of the experiment is $0.465 \mathrm{Nm}^{-1}$. Density of mercury $=$ $13.6 \times 10^{3} \mathrm{kgm}^{-3}$.

- Watch Video Solution

4. A U-shaped wire is dipped in a soap solution, and removed. The thin soap film formed between the wire and the light slider supports a weight of $1.5 \times 10^{-2} N$ (which includes the small weight of the slider). The length of the slider is 30 cm . What is the surface tension of the film ?
5. A wire ring of 3 cm . radius is rested on the surface of a liquid and then raised. The pull required is 3.03 g more before the film breaks than it is after. Find the surface tension of the liquid.

- Watch Video Solution

6. A liquid drop of Diameter ' D ' breaks up into 27 tiny drops. Find the resulting change in energy.

- Watch Video Solution

7. A glass tube of 1 mm diameter is dipped vertically into a container of mercury, with its lower end 3 cm below the mercury surface. What must be the gauge pressure of air in the tube to blow a hemispherical bubble at its lower end? Given that density of mercury $=13,600 \mathrm{kgm}^{-3}$ and surface tension of mercury $=0.540 \mathrm{Nm}^{-1}$
8. What is the excess pressure inside a bubble of soap solution of radius
5.00 mm ,given that the surface tension of soap solution at the temperature (20^@C) is 2.50 xx 102 N in 1 ? If an air bubble of the same dimension were formed at depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble ? (1 atmospheric pressure is 1.01 xx 105 Pa).

- Watch Video Solution

9. What will be the pressure inside a small air bubble of 0.1 mm radius situated just below the free surface of water ? Surface tension is 72 dyne cm^{-1} and atmospheric pressure is 1.013×10^{6} dyne cm^{-2}.

- Watch Video Solution

10. A small hollow sphere which has a small hole in it is immersed in water to a depth 40 cm before any water penetrates into it. If the surface tension of water is $75 d y \neq c m^{-1}$, find the radius of the hole.

- Watch Video Solution

11. A capillary tube whose inside radius is 0.5 mm is dipped in water of surface tension $75 d y \neq c m-{ }^{1}$. To what height is the water raised by the capillary action above the normal water level ? Angle of contact of water with glass is 0° and $\mathrm{g}=980 \mathrm{cms}^{-2}$

- Watch Video Solution

12. Water rises to a height of 2.94 cm capillary tube, while mercury depresses by 1.1 cm in the same tube. Find the ratio of the surface tension of mercury to that of water. Given that density of water $=10^{3} \mathrm{kgm}^{-3}$, density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$ angle of contact for water $=0^{\circ}$ and angle of contact for mercury $=140^{\circ}$

(D) Watch Video Solution

13. Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to form a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube ? Surface tension of water at the temperature of the experiment is $7.3 \times 10^{-2} \mathrm{Nm}^{-1}$. Takethe \angle ofcontact \rightarrow bezero and densityofwater $1.0 x x 10^{\wedge} 3 \mathrm{~kg} \mathrm{~m}^{\wedge}-3\left(\mathrm{~g}=9.8 \mathrm{~m} \mathrm{~s}^{\wedge}-2^{\wedge}\right)$.

- Watch Video Solution

14. If a number of little droplets of water, all of the same radius r, coalesce to form a single drop of radius R , show that the rise in temperature will be given by $\frac{3 T}{\rho J}\left(\frac{1}{r}-\frac{1}{R}\right)$ where T is the surface tension of water and J is the mechanical equivalent of heat.

- Watch Video Solution

15. A barometer contains two uniform capillaries of radii $7.2 \times 10^{-4} \mathrm{~m}$ and $1.44 \times 10^{-3} \mathrm{~m}$. If the height of liquid in narrow tube is 0.2 m more than that in the wide tube, calculate the true pressure difference. Density of liquid $=10^{3} \mathrm{kgm}^{-3}$, surface tension $=72 \times 10^{-3} \mathrm{Nm}^{-1}$ and $\mathrm{g}=$ $9.8 m s^{-2}$

- Watch Video Solution

16. What is meant by sphere of influence of a liquid molecule ?

- Watch Video Solution

17. Which part of a liquid is responsible for the phenomenon of surface tension?

- Watch Video Solution

18. Why does free surface of a liquid behave like a stretched membrane ?

- Watch Video Solution

19. How is surface energy related to surface tension of a liquid ?

- Watch Video Solution

20. What effect does temperature have on the surface tension of a liquid ?
21. Explain why small liquid drops are spherical in shape but big drops are flat?

- Watch Video Solution

22. Why small drop of mercury is spherical but bigger drops are oval in shape?

- Watch Video Solution

23. What is the angle of contact?

- Watch Video Solution

24. What are the factors on which angle of contact depends?
25. What is the effect on the angle of contact when the temperature of a liquid is increased?

- Watch Video Solution

26. Why are brick walls plastered with cement?

- Watch Video Solution

27. Why does wet ink get absorbed by a blotting paper?

- Watch Video Solution

28. By which phenomenon water rises from the root to the leaves of plants?

- Watch Video Solution

29. In summer, cotton dress is preferable. Give reason.

- Watch Video Solution

30. Antiseptics should be of low surface tension or The antiseptics used for cuts and wounds in human flesh have low surface tension. Explain, why.

- Watch Video Solution

31. The addition of flux (soldering paste) to the tin makes soldering process easy. Why?

- Watch Video Solution

32. The paints and lubricating oils have low surface tension. Why?
33. What is the function of damp-proof layer?

- Watch Video Solution

34. How does the ploughing of fields help in preservation of moisture in the soil?

- Watch Video Solution

35. Oil is poured to calm sea waves. Explain, why.

- Watch Video Solution

36. What is wetting agent?

- Watch Video Solution

37. A mercury barometer always reads less than actual pressure. Why?

- Watch Video Solution

38. Why the nib of a pen is split?

- Watch Video Solution

39. Why smearing of glycerine over the glass window prevents rain drops from sticking to it?

- Watch Video Solution

40. What makes a water-proof raincoat water proof?

- Watch Video Solution

41. Teflon is coated on the surface of non-sticking pans. Explain why.

- Watch Video Solution

42. On which side of a liquid surface, pressure is more?

- Watch Video Solution

43. How is the rise of a liquid affected if the top of the capillary tube is closed?

- Watch Video Solution

44. Air is blown into a soap bubble to increase its size. What will be the effect on the air pressure inside it?

- Watch Video Solution

45. What happens to surface tension when impurity is mixed in a liquid?

- Watch Video Solution

46. Why is it not possible to separate two pieces of paper joined by glue or gum? Explain

- Watch Video Solution

47. It is possible to produce fairly vertical film of soap solution but not of pure water. Why

- Watch Video Solution

48. Why is that molecules of a liquid near the free surface possess extra energy?
49. In order to increase the surface area of a liquid, work has to be done. Is it against the law of conservation of energy?

(Watch Video Solution

50. What shape does a liquid take, when it weighs nothing?

D Watch Video Solution

51. The velocity of water in a river is less on the bank and large in the middle. Explain, why.

- Watch Video Solution

52. A piece of chalk immersed into water emits bubbles in all directions. Why?
53. The new earthen pots keep water cooler than the old ones. Why?

D Watch Video Solution

54. Water wets the glass, while mercury does not. Explain, why.

- Watch Video Solution

55. Mercury does not cling to glass. Why?

- Watch Video Solution

56. Mercury does not cling to glass. Why?

- Watch Video Solution

57. Small insects can move about on the surface of water. How?

- Watch Video Solution

58. End of a glass tube becomes round on heating Explain.

- Watch Video Solution

59. When sewing, Why does a person often wet the end of the thread before trying to put it through the eye of a needle?

- Watch Video Solution

60. Why is it that a needle may float on clear water but will sink, when some detergent is added to water?

- Watch Video Solution

61. Why water gets depressed in a glass tube whose inner surface is coated with wax?

- Watch Video Solution

62. How is the rise of a liquid affected if the top of the capillary tube is closed?

- Watch Video Solution

63. Why it is easer to wash clothes in hot water soap solution?

- Watch Video Solution

64. It is easier to spray water in which some soap is dissolved. Explain, why.
65. Why does a small piece of camphor dance about on the water surface

- Watch Video Solution

66. Water rises in capillary tube, whereas mercury falls in the same tube. Explain.

- Watch Video Solution

67. Sand is a drier soil than clay. Why?

- Watch Video Solution

68. A 20 cm long capillary tube is dipped in water. the water rises up to 8 cm . if then there arrangement is put in a freely falling elevator, what will
be the length of water column in the capillary tube?

- Watch Video Solution

69. Explain what happens when length of a tube is less than the height upto which a liquid may rise in it?

- Watch Video Solution

70. Explain why oil spreads over the surface of water?

- Watch Video Solution

71. A large force is required to draw apart normally two glass plates enclosing a thin water film

- Watch Video Solution

72. It is difficult to make mercury ender a fine thermometer tube. explain why

- Watch Video Solution

73. Water can be poured into a bottle having a narrow neck with the help of a glass rod. Explain why.

- Watch Video Solution

74. How does surface tension change with temperature?

- Watch Video Solution

75. What is the effect of less soluble impurities on the surface tension of a liquid.
76. A large bubble is formed at one end of the capillary tube and a small one at the other end. which will grow at the expense of the other?

- Watch Video Solution

77. What will be the pressure inside a small air bubble of 0.1 mm radius situated just below the free surface of water ? Surface tension is 72 dyne cm^{-1} and atmospheric pressure is 1.013×10^{6} dyne cm^{-2}.

- Watch Video Solution

78. A soap film is formed on a rectangular frame of 7 cm side dipping into a scop solution. The frame hangs from the arm of a balance. An extra weight of 0.4 gram is to be placed in the opposite pan to balance the pull on the frame. Caluclate the surface tension of the soap solution
79. A glass plate of length 10 cm , breadth 4 cm and thickness 0.4 cm weighs 40 g in air. If it is held vertically with long side horizontal and the plate half immersed in water, what will be its apparent weight? Surface tension of water $=70 d y \neq \mathrm{cm}^{-1}$.

- Watch Video Solution

80. Calculate the work done in blowing a soap bubble from a radius of 2 cm to 3 cm , the surface tension of the soap solution is $30 d y \neq \mathrm{cm}^{-2}$

- Watch Video Solution

81. Calculate the amount of energy evolved when 8 droplets of water (Surface tension $0.072 \mathrm{Nm}^{-1}$) of radius $\frac{1}{2} \mathrm{~mm}$ each combines into one.

- Watch Video Solution

82. Calculate the energy spent in spraying a drop of mercury of $\mathrm{r}=1 \mathrm{~cm}$ radius into 10^{6} droplets all of the same size. If the surface tension of mercury is $32 \times 10^{-2} \mathrm{Nm}^{-1}$

- Watch Video Solution

83. Calculate the energy spent in spraying a drop of mercury of $r=1 \mathrm{~cm}$ radius into 10^{6} droplets all of the same size. If the surface tension of mercury is $32 \times 10^{-2} \mathrm{Nm}^{-1}$

- Watch Video Solution

84. A film of water is formed between two straight parallel wires of length

10 cm each separated by 0.5 cm If their separation is increased by 1 mm while still maintaining their parallelism, how much work will have to be done (Surface tension of water $=7.2 \times 10^{-2} \mathrm{Nm}^{-1}$)
85. A soap bubble is blown to a diameter of 7 cm . if 36960 ergs of work is done in blowing if further find the new radius, if surface tension of the soap solution is 40 dynes $/ \mathrm{cm}$.

- Watch Video Solution

86. What is the excess pressure inside a bubble of soap solution of radius 5.00 mm,given that the surface tension of soap solution at the temperature (20^@C) is $2.50 x x 102 \mathrm{~N}$ in 1 ? If an air bubble of the same dimension were formed at depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble ? (1 atmospheric pressure is 1.01 xx 105 Pa).

- Watch Video Solution

87. What is the excess pressure inside a bubble of soap solution of radius
5.00 mm ,given that the surface tension of soap solution at the temperature (20^@C) is 2.50 xx 102 N in 1 ? If an air bubble of the same
dimension were formed at depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble ? (1 atmospheric pressure is 1.01 xx 105 Pa).

- Watch Video Solution

88. The pressure of air in a soap bubble of 0.7 cm diameter is 8 mm of water above the atmospheric pressure calculate the surface tension of soap solution.

- Watch Video Solution

89. If the excess pressure inside a soap bubble of radius 1 cm is balanced by a column of oil 1.36 mm high, find the surface tension of the bubble.
(specific gravity of liquid $=0.9$)

- Watch Video Solution

90. What will be the pressure inside a small air bubble of 0.1 mm radius situated just below the free surface of water ? Surface tension is 72 dyne cm^{-1} and atmospheric pressure is 1.013×10^{6} dyne cm^{-2}.

- Watch Video Solution

91. Two soap bubbles have radii in the ratio 1:2. compare the excess of pressure inside these bubbles. also compare the work done in blowing these bubbles

- Watch Video Solution

92. Find the difference in excess pressure on the inside and outside of a raindrop if its diameter changes from 1.003 cm to 1.002 cm by evaporation. (surface tension of rain water is $72 d y \neq \mathrm{cm}^{-1}$)

- Watch Video Solution

93. calculate the height to which water at 4° rise in a capillary tube of 1 mm diameter. take $\mathrm{g}=980 \mathrm{cms}^{-2}$ and surface tension of water is $72 d y \neq c m^{-1}$

- Watch Video Solution

94. In an experiment to determine the surface tension of water by capillary rise, in a capiliary tube of diameter $10^{-3} \mathrm{~m}$ water rises to a height of 0.03 m . Calculate the surface tension of water. Given. $\mathrm{g}=$ $9.8 \mathrm{~ms}^{-2}$, density of water $=1000 \mathrm{kgm}^{-3}$

- Watch Video Solution

95. A tube of a mencury barometer is 4.5 mm in diameter. What error does surface tension introduce in its reading? Given that angle of contact between mercury and glass is 130° and the surface temion is $540 \mathrm{~d} y \neq \mathrm{cm}^{-1}$ Take density of mercury as $13.6 \mathrm{gcm}^{-3}$ and $\mathrm{g}=980 \mathrm{cms}^{-2}$
96. A capillary tube of immer diameter 0.5 mm is dipped in a liquid of specific gravity 13.6 , surface tension $545 d y \neq \mathrm{cm}^{-1}$ angle of contact 130°, Find the depression or elevation of liquid in the tube.

- Watch Video Solution

97. Water rises to a height of 10 cm in a capillary tube and mercury falls to a depth of 3.42 cm in the same capillary tube. Compare the surface tensions of water and mercury. Specific gravity of mercury is 13.6. the angle of contact for water is 0° and that for mercury in 135°

- Watch Video Solution

98. Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to form a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube ? Surface tension of water at the temperature of the experiment is
$7.3 \times 10^{-2} \mathrm{Nm}^{-1}$. Takethe \angle ofcontact \rightarrow bezero and densityofwater $1.0 x x 10^{\wedge} 3 \mathrm{~kg} \mathrm{~m}^{\wedge}-3\left(\mathrm{~g}=9.8 \mathrm{~m} \mathrm{~s}^{\wedge}-2^{\wedge}\right)$.

- Watch Video Solution

99. Find the difference in levels of mercury in the two limbs of a U-tube, if the diameter of the bore of one limb is 1 mm and of the other is 4 mm . The surface tension of mercury is $544 d y \neq \mathrm{cm}^{-1}$, its density is $13.6 \mathrm{gcm}^{-3}$ and the angle of contact is 130°

- Watch Video Solution

100. Two limbs of a capillary U-tube have the internal diameters of 1 mm and 2 mm . the tube is held vertically and is partially filled with liquid of surface tension $50 d y \neq \mathrm{cm}^{-1}$. find the density of liquid if the difference of levels in the two limbs is 1.25 cm . Assume angle of contact to be 0°
101. A glass capillary tube of internal diameter 0.6 mm is held vertically with the lower end in water and with 80 mm of the tube above the surface of water. how much high does the water rise? If the tube is now lowered until 30 mm of its length is above the surface of water what happens? surface tension of water is $72 d y \neq \mathrm{cm}^{-1}$

- Watch Video Solution

102. If a 5 cm long capillary tube with 0.1 mm internal diameter open at both ends is slightly different water having surface tension $75 d y \neq c m^{-1}$ what will happen to the water column in the tube.

- Watch Video Solution

103. A vertical capillary tube with inside diameter 0.5 mm is submerged into water, so that the length of its Parth emerging outside the water surface is equal to 25 mm . find the radius of curvature of the meniscus. surface tension of water is $72 d y \neq \mathrm{cm}^{-1}$
104. Water rises in a capillary tube to a height 2 cm . in an another capillary tube whose radius is one third of it, how much water will rise? If the first capillary tube is inclined at an angle of 60° with the vertical, then what will be the position of water in the tube.

- Watch Video Solution

105. A tube of conical bore of length 10 cm is just dipped in the water. The diameters of upper and lower are 0.04 cm and 0.06 cm respectively. find the height to which the liquid rises in the tube. given surface tension of water is $70 d y \neq \mathrm{cm}^{-1}$ and angle of contact is 0°

- Watch Video Solution

106. The lower end of a capillary tube of dimeter 2 mm is dipped 8 cm below the surface of water in a beaker. What is the pressure required in
the tube to blow a hemispherical bubble at its end in water? the surface tension of water is $7.3 \times 10^{-2} \mathrm{Nm}^{-1} \rho_{w}$ ater $=10^{3} \mathrm{kgm}^{-3} \mathrm{~g}=9.8 \mathrm{~ms}^{-2} 1$ atmospheric pressure $=1.013 \times 10^{5} \mathrm{Nm}^{-2}$ Also calculate the pressure inside the bubble.

- Watch Video Solution

107. Calculate the force required to separate two glass plates of area $10^{-2} m^{2}$ with a film of water 0.05 mm thick between them. surface tension of water is $72 d y \neq \mathrm{cm}^{-1}$

- Watch Video Solution

108. Two separate air bubbles (radii 0.002 m and 0.004 m) formed of the same liquid (surface tension ${ }^{`} 0.70 \mathrm{Nm}^{\wedge}-1$)~ came together to form a double bubble. Find the radius and sense of curvature of the internal film surface common to both the bubbles.
109. A small hollow sphere which has a small hole in it is immersed in water to a depth 40 cm before any water penetrates into it. If the surface tension of water is $75 d y \neq \mathrm{cm}^{-1}$, find the radius of the hole.

- Watch Video Solution

110. What will be the pressure inside a small air bubble of 0.1 mm radius situated just below the free surface of water ? Surface tension is 72 dyne cm^{-1} and atmospheric pressure is 1.013×10^{6} dyne cm^{-2}.

- Watch Video Solution

111. Two spherical soap bubbles coalesce. If V is the consequent change in volume of the contained air and S the change in total surface area, show that $3 P V+4 S T=0$, where T is the surface tension of the soap bubble and P is atmospheric pressure.
112. There is a soap bubble of radius $2.4 \times x 10^{\wedge}(-4) \mathrm{m}$ in air cylinder which is originally at a pressure of $10^{\wedge}(5)(\mathrm{N}) /\left(\mathrm{m}^{\wedge}(2)\right)$. The air in the cylinder is now compressed isothermally until the radius of the bubble is halved. (the surface tension of the soap film is $\left.0.08 \mathrm{Nm}^{\wedge}(-1)\right)$. The pressure of air in the cylinder is found to be $8.08 \times x 10^{\wedge}(n)(N) /\left(m^{\wedge}(2)\right)$. What is the value of n ?

- Watch Video Solution

113. two soap bubbles of radii r 1 and r 2 coalesce to form a bubble of radius r . If the external pressure is P then the surface tension is T is given
by $T=\frac{P\left(r^{3}-r_{1}^{3}-r_{2}^{3}\right)}{4\left(r_{1}^{2}+r_{2}^{2}-r^{2}\right)}$

- Watch Video Solution

114. A glass capillary sealed at the upper end is of length 0.11 m and internal diameter $2 \times 10^{-5} \mathrm{~m}$. The tube is immersed vertically into a
liquid of surface tension $5.06 \times 10^{-2} \mathrm{Nm}^{-1}$. To what length in cm has the capillary to be immersed so that the liquid levels inside and outside the capillary become the same ? What will happen to the water levels inside the capillary if the seal is now broken?

- Watch Video Solution

Exercise

1. Define surface tension.. Give units and dimensions.

- Watch Video Solution

2. Define surface tension.

- Watch Video Solution

3. How is surface energy related to surface tension of a liquid ?
4. Explain the difference between surface tension and surface energy.

- Watch Video Solution

5. Define surface tension.. Give units and dimensions.

- Watch Video Solution

6. Define surface energy. Find the relation between surface energy and surface tension.

- Watch Video Solution

7. Define surface energy. Find the relation between surface energy and surface tension.
8. Explain the difference between surface tension and surface energy.

- Watch Video Solution

9. Explain the difference between surface tension and surface energy.

- Watch Video Solution

10. Define surface tension.

- Watch Video Solution

11. Give molecular theory to explain surface tension.
12. How one can say that when a large number of drops of a liquid (same size) coalesce to form a big drap, there is always liberation of energy.

- Watch Video Solution

13. Determine excess of pressure in side liquid drop

- Watch Video Solution

14. Determine excess of pressure in side liquid drop

- Watch Video Solution

15. Determine excess of pressure in side air bubble

- Watch Video Solution

16. Determine excess of pressure in side liquid drop

- Watch Video Solution

17. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.

- Watch Video Solution

18. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.
19. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.

- Watch Video Solution

20. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.

- Watch Video Solution

21. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.
22. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.

- Watch Video Solution

23. Determine excess of pressure in side air bubble

- Watch Video Solution

24. Determine excess of pressure in side soap solution bubble.

- Watch Video Solution

25. Determine excess of pressure in side air bubble

- Watch Video Solution

26. How is surface energy related to surface tension of a liquid?

- Watch Video Solution

27. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.

- Watch Video Solution

28. Derive the formula $\frac{2 T \cos \theta}{r}=h \rho g$ where h the capillary ascent and other symbob have their usual meanings

- Watch Video Solution

29. Derive an expression for the rise of liquid in a capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.
