# ©゙" doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - MODERN PUBLICATION

## Thermal expansion and Calorimetry

Example

1. Calculate the temperature which has same
numerical value on Celsius and Fahrenheit
scale.

## - Watch Video Solution

2. A copper bar is 80 cm long at $15^{\circ} \mathrm{C}$. what is increase in length when heated $35^{\circ} \mathrm{C}$ ? The coefficient of linear expansion for copper is $\left(1.7 \times 10^{-5}\right)^{\circ} C^{-1}$

## - Watch Video Solution

3. A sheet of brass is 50 cm long and 10 cm broad at $0^{\circ} C$. The area of the surface
increases by $1.9 \mathrm{~cm}^{2}$ at $100^{\circ} \mathrm{C}$. Find the coefficient of linear expansion of brass

## D Watch Video Solution

4. The density of mercury is $13.6 \mathrm{gcm}^{3}$ at $0^{\circ} \mathrm{C}$ and its coefficient of cubical expansion is
$\left(1.82 \times 10^{-4}\right)^{\circ} C^{-1}$.Calculate the density of Mercury at $50^{\circ} \mathrm{C}$
5. A coper block of mass 2.5 kg is heated in a
furnace to a temperature of $500^{\circ} \mathrm{C}$ and then placed on a large ice block. What is the maximum amount of ice that can melt?
(specific heat of copper $=0.39 \mathrm{Jg}^{-1} \mathrm{C}^{-1}$, heat of fusion of watter $=335 \mathrm{Jg}^{-1}$ ).

## - Watch Video Solution

6. A faulty thermometer has its fixed points marked as $5^{\circ}$ and $95^{\circ}$. the temperature of a
body as measured by the faulty thermometer
is $59^{\circ}$ find the correct temperature of the body on Celsius scale

## D Watch Video Solution

7. A brass rod of length 40 cm is joined to a copper rod of length 50 cm . the two roads are of the same thickness and at initial temperature of $40^{\circ} \mathrm{C}$. what is a change in length of the combined rodd when the same is heated at $280^{\circ} \mathrm{C}$. coefficient of linear
expansion of brass and copper are $\left(1.9 \times 10^{-5}\right)^{\circ} C^{-1}$ and $\quad\left(1.7 \times 10^{-5}\right)^{\circ} C^{-1}$ respectively

## D Watch Video Solution

8. A steel beam is 5 m long at a temperature of
$20^{\circ} \mathrm{C}$. On a hot day, the temperature rises to
$40^{\circ} \mathrm{C}$. What is the change in the length of the beam due to thermal expansion ? Given, coefficient of linear expansion of steel $=$
$\left(1.2 \times 10^{-5}\right)^{\circ} C^{-1}$ and Young's modulus of steel $=2.0 \times 10^{11} \mathrm{Nm}^{-2}$

## D Watch Video Solution

9. A steel beam is 5 m long at a temperature of
$20^{\circ} \mathrm{C}$. On a hot day, the temperature rises to
$40^{\circ} C$. (b) Suppose that the ends of the beam
are initially in contact with rigid verical
supports. How much force will the expanded
beam exert on the supports, if it has a cross
sectional area of $60 \mathrm{~cm}^{2}$. Given, coefficient of
linear expansion of steel $=\left(1.2 \times 10^{-5}\right)^{\circ} C^{-1}$ and Young's modulus of steel = $2.0 \times 10^{11} \mathrm{Nm}^{-2}$

## D Watch Video Solution

10. A circular sheet of copper of radius 35 cm is
at $20^{\circ} \mathrm{C}$ on heating its area increases by
$14.5 \mathrm{~cm}^{2}$. If coefficient of linear expansion of copper is $\left(1.7 \times 10^{-5}\right)^{\circ} C^{-1}$ find the temperature to which the sheet was heated.
11. The coefficient of volume expansion of glycerine is $49 \times 10^{-5} \wedge \circ C^{-1}$. What is the fractional change in its density for $30^{\circ} \mathrm{C}$ rise in temperature?

## D Watch Video Solution

12. In a experiment on the specific heat of a metal, a 0.20 kg block of the metal at $150^{\circ} \mathrm{C}$ is dropped in a copper calorimeter (of water equivalent 0.025 kg ) containing 150 cc of water
at $27^{\circ} \mathrm{C}$. The final temperature is $40^{\circ} \mathrm{C}$.

Compute the specific heat of the metal. If heat
losses to the surroundings are not negligible,
is your answer greater or smaller than the actual value for specific heat of the metal?

## - Watch Video Solution

13. It takes 15 minutes to rise a certain amount
of water from $0^{\wedge} @ C$ to boiling point using a heater. Then it takes 1 hour and 20 minutes to convert all the water into vapour. the specific
heat of water is $\left(1 \mathrm{calg}^{-1}\right)^{\circ} \mathrm{C}^{-1}$, the latent heat of vapourization of water is:

## D Watch Video Solution

14. At what temperature do the Celsius and Fahrenheit scales coincide?

## - Watch Video Solution

15. At what temperature do the Celsius and

Fahrenheit scales coincide?
16. What should be lengths of steel and copper rod, so that the length of steel rod is 5 cm longer than the copper rod at all temperatures ? $\alpha$ for copper $=$ $\left(1.7 \times 10^{-5}\right)^{\circ} C^{-1} \quad \alpha \quad$ for $\quad$ steel $=$ $\left(1.1 \times 10^{-5}\right)^{\circ} C^{-1}$
17. A bimetallic strip is formed out of two identical strips, one of copper and the other of brass. The coefficients of linear expansion of
the two metals are $\alpha_{C}$ and $\alpha_{B}\left(\alpha_{B}>\alpha_{C}\right)$. On heating the bimetallic strip through temperature $\Delta T$, the strip bends into an arc of a circle. Find the radius of curvature of the bimetallic strip.

## - Watch Video Solution

18. A uniform pressure $p$ is exerted on all sides
of a solid cube of a material at temprature
$t^{\wedge}(@) C . \quad$ By what amount should the temperature of the cube be raised in order to
bring its original volume back to the value it
had before the pressure was applied ? K is the
bulk modulus and alpha is the coefficient of linear expansion of material of solid cube.

## D Watch Video Solution

19. A piece of metal weighs 46 g in air. When it
is immersed in a liquid of specific gravity 1.24
at $27^{\circ} \mathrm{C}$, it weighs 30 g . When the temperature of the liquid is raised to $42^{\circ} \mathrm{C}$, the metal piece weighs 30.5 g . The specific gravity of the liquid at $42^{\circ} \mathrm{C}$ is 1.20 . Calculate
the coefficient of linear expansion of the metal.

## D Watch Video Solution

20. Using the following data, calculate at what temperature will the wood just sink in benzene Density of wood at $0^{\circ} \mathrm{C}=$ $8.8 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$ Density of benzene at $0^{\circ} \mathrm{C}=$ $9 \times 10^{2} \mathrm{kgm}^{-3}$ Cubical expansivity of wood $=$
$\left(1.5 \times 10^{-4}\right)^{\circ} C^{-1} \quad$ Cubical expansivity of benzene $=\left(1.2 \times 10^{-3}\right)^{\circ} C^{-1}$

## - Watch Video Solution

21. A piece of metal floats on mercury. The coefficients of volume expansion of the metal and mercury are $\gamma_{1}$ and $\gamma_{2}$ respectively. If the temperatures of both mercury and the metal are increased by an amount $\Delta T$, what is the the factor by which the fraction of the volume of the metal submerged in mercury changes?
22. Earth receives $1400 \mathrm{~W} / \mathrm{m}^{2}$ of solar power.

If all the solar energy falling on a lens of area
$0.2 m^{2}$ is focused on to a block of ice of mass
280 grams, calculate the time taken to melt
the ice. (Latent heat of fusion of ice= $\left.3.3 \times 10^{5} \mathrm{~J} / \mathrm{kg}\right)$

## - Watch Video Solution

23. A lead bullet just melts when stopped by an obstacle. Assuming that 25 per cent of the
heat is absorbed by the obstacle, find the velocity of the bullet if its initial temperature
is $27^{\circ} \mathrm{C}$. (Melting point of lead $=327^{\circ} \mathrm{C}$, specific heat of lead =
0.03 cal or $\operatorname{ies}\left(\mathrm{gm}^{-1}\right)^{\circ} \mathrm{C}^{-1}$, latent peat of fusion of lead= 6 cal or es $/ \mathrm{gm}$, J= 4.2joes / cal or ie).

## - Watch Video Solution

24. A steel drill making 180 rpm is used to drill a hole in a block of steel. The mass of the steel
block and the drill is 180 gm . If the entire mechanical work is used up in producing heat and the rate of raise in temperature of the block and the drill is $0.5^{\circ} \frac{C}{s}$. Find the rate of working of the drill in watts. Specific heat of steel $=0.1\left(\text { calg }^{-1}\right)^{\circ}{ }^{\wedge}-1$

## - Watch Video Solution

25. A steel drill making 180 rpm is used to drill
a hole in a block of steel. The mass of the steel
block and the drill is 180 gm . If the entire
mechanical work is used up in producing heat and the rate of raise in temperature of the
block and the drill is $0.5^{\circ} \frac{C}{s}$. Find the couple required to drive the drill. Specific heat of steel
$=0.1\left(\text { calg }^{-1}\right)^{\circ} \wedge-1$

## - Watch Video Solution

26. The temperature of equal masses of three different liquids $\mathrm{A}, \mathrm{B}$ and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when

A and B are mixed is $16^{\circ} \mathrm{C}$ and when B and C
are mixed it is $23^{\circ} C$. What should be the temperature when $A$ and $C$ are mixed?

## D Watch Video Solution

27. About 5 g of water at $30^{\circ} \mathrm{C}$ and 5 g of ice at
$-20^{\circ} C$ are mixed together in a calorimeter.

Calculate final temperature of the mixture.

Water equivalent of the calorimeter is
negligible. Specific heat of ice =
$0.5 \operatorname{cal}\left(g^{-1}\right)^{\circ} C^{-1}$ and latent heat of ice $=$ $80 c a l g^{-1}$

## Watch Video Solution

28. In an industrial process 10 kg of water per
hour is to be heated from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. To do this steam at $150^{\circ} \mathrm{C}$ is passed from a boiler into a copper coil immersed in water.

The steam condenses in the coil and is returned to the boiler as water at $90^{\circ} \mathrm{C}$. How many kilograms of steam is required per hour (specific heat of steam $=1 \operatorname{cal}\left(g^{-1}\right)^{\circ} C^{-1}$ Latent heat of vapourization $=540 \mathrm{cal} / \mathrm{g}$ ) ?
29. A piece of copper of mass 7.5 g at $27^{\circ} \mathrm{C}$ is dropped in boling liquid oxygen (boling point
$-183^{\circ} \mathrm{C}$ ). The released oxygen oc cupies 1.89
letres at $20^{\circ} \mathrm{C}$ and a pressure of 750 mm . Find
the latent heat of vaporisation of oxygen.
Given that specific heat of copper=
$0.08 g\left(\mathrm{cal}^{-1}\right)^{\circ} C^{-1}$ and density of oxygen at
NTP is $1.429 c^{\prime} l^{-1}$

## - Watch Video Solution

30. What is the cause of hotness of body?

## D Watch Video Solution

31. What physical changes may be observed, if an object is heated?

## D Watch Video Solution

32. A body is said to be in equilibrium
33. What is the principle of a Thermometer?

## - Watch Video Solution

34. What is the normal temperature of a human body?

## - Watch Video Solution

35. Do the values of coefficients of expansion
differ, when the lengths are measured in cgs

## system or in SI ?

## D Watch Video Solution

36. Are coefficients of thermal expansion constant for a given solid?

## D Watch Video Solution

37. Of metal and alloy, which has greater value of temperature coefficient?

D Watch Video Solution
38. is the value of temperature coefficient of resistance always positive?

## - Watch Video Solution

39. There is a hole in a metal disc. What
happens to the size of the hole if metal disc is heated?

## - Watch Video Solution

40. How do internal diameter of a metal
washer differs (increase, decrease or remain
the same) when the washer is heated ?

## D Watch Video Solution

41. How do volume of a metal washer differs
(increase, decrease or remain the same) when the washer is heated?
42. How do density of a metal washer differs
(increase, decrease or remain the same) when the washer is heated ?

## D Watch Video Solution

43. How do mass of a metal washer differs
(increase, decrease or remain the same) when
the washer is heated?

## - Watch Video Solution

44. How do internal diameter of a metal washer differs (increase, decrease or remain the same) when the washer is heated ?

## D Watch Video Solution

45. A metal ball is heated through a certain temperature. Out of mass, radius, surface area and volume, which will undergo largest percentage increase and which one the least?
46. The top of a lake is frozen. Air in contact is
at $-15^{\circ} C$. What do you expect the maximum
temperature of water at the bottom of the lake?

## - Watch Video Solution

47. The top of a lake is frozen. Air in contact is at $-15^{\circ} C$. What do you expect the maximum temperature of water at the bottom of the lake?
48. Can a substance contract on heating?

## - Watch Video Solution

49. In laying a railway line, a small gap is always left between the iron rails. Why?
50. Why telephone wires between two poles become taut in winter?

- Watch Video Solution

51. Why the pipes carrying steam should have loops?
( Watch Video Solution
52. A glass stopper could be loosened by warming the neck of a bottle. Explain

- Watch Video Solution

53. Do water and ice have the same specific heats?

- Watch Video Solution

54. Is the specific heat of sand greater than
that of water?

- Watch Video Solution

55. Tea gets cooler when sugar is added to it, why?
56. it is sometimes harmful to put on wet clothes why?

D Watch Video Solution
57. Hot water bottles are usedfor fomentation.

Why?

D Watch Video Solution
58. In cold countries juice bottles are placed under water so as to avoid freezing why?

D Watch Video Solution
59. water is used as an effective coolant why?

## D Watch Video Solution

60. Ditinguish clearly between temperature and heat.
61. should a thermometer bulb have large heat capacity for small heat capacity explain

## - Watch Video Solution

62. Two thermometer sa constructed in the
same way except that one has a spherical bulb
and the other a cylindrical bulb. which will respond quickly to temperature changes?
63. What is wrong in taking the melting point of ice and the boiling point of water as standard fixed point?( as was originally done in Celsius scale)

D Watch Video Solution
64. At what temperature have the celcius and fahrenheit reading the same numerical value?
65. The difference between length of a certain brass rod and that of a steel rod is claimed to be constant at all temperature. is this possible?

## - Watch Video Solution

66. Why thick glass tumbler cracks when boiling liquid is put in it?
67. iron rims are heated Red hot before planting on cartwheels why?

## D Watch Video Solution

68. Two identical rectangular strips of copper
and the other of Steel are together to form a bimetallic rod. what will happen on heating?
69. Pendulum clocks may run slow in summer and fast in winter .Why?

## D Watch Video Solution

70. why is clock pendulum made of invar?

- Watch Video Solution

71. A circular piece is cut from a flat metal sheet. the cities then placed in a furnace. build
a size of whole become larger or smaller? explain

## D Watch Video Solution

72. how does the diameter of the opening in the cast iron plate of a kitchen stove changed when the stove is heated?

D Watch Video Solution
73. a specific gravity bottle is marked with its volume along with a temperature value why?

## D Watch Video Solution

74. An alloy consists of $n$ metals of masses $m_{1}, m_{2}, m_{3} \ldots \ldots, m_{n} \quad$ and $\quad$ specific heats $c_{1}, c_{2}, c_{3}, \ldots . c_{n}$ respectively. what is the specific heat of the alloy?

## - Watch Video Solution

75. Ice is put into a tumbler containing water at room temperature. for faster cooling should the ice be allowed to float naturally On The Water or be pushed to the bottom of the container with a stick and held there? Explain.

## D Watch Video Solution

76. how the fishes can survive in the extreme winter when ponds and lakes are frozen?
77. Normal temperature of the human body is
$98.4^{\circ} \mathrm{F}$. Find the temperature on Celsius and absolute scale.

## D Watch Video Solution

78. A Celsius thermometer and a Fahrenheit
thermometer are put in a hot bath. The
reading on Fahrenheit thermometer is just
three times the reading on Celius
thermometer. What is the temperature of the bath?

## D Watch Video Solution

79. When a Centigrade thermometer is taken from the melting ice to a warm liquid, the mercury level rises to $2 / 5$ th of the distance between the lower and the upper fixed points.

Find the temperature of liquid in ${ }^{\wedge} \circ C$ and K.
80. A metal bar measures 30 cm at $0^{\circ} C$ and 50.048 cm at $80^{\circ} C$. Find the coefficient of linear expansion of the metal.

## D Watch Video Solution

81. How much the temperature of a brass rod should be increase service increase its length
by 1 percentage? $\alpha$ of brass $=0.00002^{\circ} C^{-1}$
82. A steel tape is calibrated at $20^{\circ} \mathrm{C}$. On a cool day, when the temperature is $-15^{\circ} \mathrm{C}$, what will be the percentage error in the tape?

For steel, aplha $=\left(1.1 \times 10^{-5}\right)^{\circ} C^{-1}$

## - Watch Video Solution

83. An iron scale is correct at $0^{\circ} \mathrm{C}$ an at this
temperature, a zinc rod measures 1 m on this scale. What will be the length of the zinc rod as measured by the iron scale when both the
are at $100^{\circ} C$ ? (Linear expansivity of zinc $=$
$\left(26 \times 10^{-6}\right)^{\circ} C^{-1}$ and linear expansivity of iron $=\left(12 \times 10^{-6}\right)^{\circ} C^{-1}$

## D Watch Video Solution

84. A steel tape measures that length of a copper rod as 90.0 cm when both are at $10^{\circ} \mathrm{C}$,
the calibration temperature, for the tape.
What would the tape read for the length of
the rod when both are at $30^{\circ} C$. Given
$\alpha_{s}$ teel $=\left(1.2 \times 10^{-5}\right)^{\circ} C^{-1}$

$$
\alpha_{C u}=1.7 \times 10^{-5} \wedge \circ C^{-1}
$$

## D Watch Video Solution

85. It is required to prepare a steel metre scale, such that the millimetre intervals are to be ac curate within 0.0005 mm at a certain temperature. Determine the maximum temperature variation allowable during the rulling of millimetre marks. Given, alpha for steel $=\left(1.322 \times 10^{-5}\right)^{\circ} C^{-1}$
86. A cylinder of diameter exactly 1 cm at $30^{\circ} \mathrm{C}$
is to be slided into a hole in a steel plate. The
hole has a diameter of 0.99970 cm at $30^{\circ} \mathrm{C}$. To
what temperature must the plate be heated?
For steel $\alpha=1.1 \times 10^{-5} \circ C^{-1}$

## - Watch Video Solution

87. The volume of a thin brass vessel and the
volume of a solid cube are both equal to 1
litre. what will be the change in the volumes of

The vessel and the cube upon be heated to $25^{\circ} C$ ? Given $\alpha_{\text {brass }}=\left(1.9 \times 10^{-5}\right)^{\circ} C^{-1}$

## D Watch Video Solution

88. A block of material weighing 500 grams at
$100^{\circ} C$ is dropped into hundred gram of water
at $12^{\circ} C$. if the water is contained in copper
calorimeter
(
specific heat
$=$
$\left(0.093 \mathrm{calg}^{-1}\right)^{\circ} C^{-1}$ ) weighing hundred gram
and the temperature rises to $49^{\circ} \mathrm{C}$ what is the specific heat of the substance?

## D Watch Video Solution

89. A piece of iron of mass 100 g is kept inside a
furnace till it attains the temperature of the
furnace. the hot piece of iron is then dropped into a calorimeter containing 240 g of water at

20 degrees celsius. the mixture attains an equilibrium at a temperature of 60 degree

Celsius. find the temperature of the furnace.
water equivalent of calorimeter $=10 \mathrm{~g}$ and specific heat of iron $470 \mathrm{Jkg}^{-1} \mathrm{c}^{-1}$

## D Watch Video Solution

90. An electric heater of power 1000 W raises
the temperature of 5 kg of a liquid from 25 to

31 degrees celsius in 2 minutes. calculate heat
capacity of the liquid and its specific heat.

## - Watch Video Solution

91. A refrigerator convert 50 gram of water at

15 degree Celsius into ice at -15 degree celsius
in 1 hour. determine the quantity of heat removed per minute. specific latent heat of ice
is $336 \mathrm{Jg}^{-1}$ and specific heat of ice is
$2.1 J\left(g^{-1}\right)^{\circ} C^{-1}$

## D Watch Video Solution

92. Determine the resulting temperature when

150 gram of ice at zero degree celsius is mixed
with 300 grams of water at 50 degree Celsius.
latent heat of fusion of ice $336 \mathrm{Jg}^{-1}$.

## D Watch Video Solution

93. 1 kg of ice at -10 degree Celsius is heated until the whole of it evaporates. how much
heat is required? latent heat of fusion of ice $=$ $336 \times 10^{3} \mathrm{Jkg}^{-1}$, specific latent heat of steam
$=2268 \times 10^{3} \mathrm{Jkg}^{-1}$, specific heat capacity of
ice $=2.1 \times 10^{3} \mathrm{Jkg}^{-1}$ and specific heat
capacity of water $=4.2 \times 10^{3} \mathrm{Jkg}^{-1} k^{-1}$
94. the temperature of hundred gram of water is to be raised from 24 to 90 degree Celsius by adding steam to it. calculate the mass of the steam required for this purpose. specific heat of water is $4.2 \times 10^{3} J\left(\mathrm{~kg}^{-1}\right)^{\circ} \mathrm{C}^{-1}$ and latent heat of vapourization= $2268 \times 10^{3} \mathrm{Jkg}^{-1}$
95. the temperature of hundred gram of water
is to be raised from 24 to 90 degree Celsius by
adding steam to it. calculate the mass of the steam required for this purpose. specific heat of water is $4.2 \times 10^{3} J\left(\mathrm{~kg}^{-1}\right)^{\circ} \mathrm{C}^{-1}$ and latent heat of vapourization= $2268 \times 10^{3} \mathrm{Jkg}^{-1}$
96. steam at hundred degree celsius is passed over 1000 gram of ice at zero degree celsius. after sometime 600 gram of ice at zero degree celsius is left and 450 gram of water at zero degree celsius is formed. calculate the specific latent heat of vaporization of steam. specific heat capacity of water $=4200 J\left(\mathrm{~kg}^{-1}\right)^{\circ} \mathrm{C}^{-1}$ and latent heat of fusion of ice $336 \mathrm{Jg}^{-1}$.

## - Watch Video Solution

97. A thermometer has wrong calibrations (of course at equal distances and the capillary is of uniform diameter). It reads the melting point of ice as $-10^{\circ}$. It reads $60^{\circ}$ in place of $50^{\circ} \mathrm{C}$. What is the temperature of boiling point of water on this scale?

## D Watch Video Solution

98. The design of some physical instrument requires that there be a constant difference in
length of 10 cm between an iron rod and a copper cylinder laid side by side at all temperature find their lengths
$\alpha_{F e}=\left(11 \times 10^{-6}\right)^{\circ} C^{-1}$,
$\alpha_{C u}=\left(17 \times 10^{-6}\right)^{\circ} C^{-1}$

## D Watch Video Solution

99. A brass rod of length 40 cm is joined to a copper rod of length 50 cm . the two roads are of the same thickness and at initial temperature of $40^{\circ} \mathrm{C}$. what is a change in
length of the combined rodd when the same is
heated at $280^{\circ} \mathrm{C}$. coefficient of linear expansion of brass and copper are
$\left(1.9 \times 10^{-5}\right)^{\circ} C^{-1}$ and $\quad\left(1.7 \times 10^{-5}\right)^{\circ} C^{-1}$ respectively

## D Watch Video Solution

100. The brass scale of a barometer gives correct reading at $0^{\circ} C$. Coefficient of thermal expansion of brass is $\left(20 \times 10^{-6}\right)^{\circ} C^{-1}$. The
barometer reads 75 cm at $27^{\circ} \mathrm{C}$. What is the atmospheric pressure at $27^{\circ} \mathrm{C}$ ?

## D Watch Video Solution

101. A steel wire 2 mm in diameter is stretched between two clamps, when its temperature is

40^@C Calculate the tension in the wire, when
its temperature falls to $30^{\wedge} @ \mathrm{C}$ Given, coefficient $Y$ for steel $=(21 \mathrm{xx}$ $\left.10^{\wedge} 11\right)$ dyne//cm^2`
102. When a building is constructed at $25^{\circ} \mathrm{C}$, a steel beam of area of cross section $45 \mathrm{~cm}^{2}$ is put in place with its ends cemented in pillars.

If the sealed ends cannot move, what will be
the compressional force in the beam, when the temperature is $-10^{\circ} C$ ? For steel, $\alpha=\left(1.1 \times 10^{-5}\right)^{\circ} C^{-1} \quad$ and $\quad Y \quad=$ $2 \times 10^{11} \mathrm{Nm}^{-2}$.

## D Watch Video Solution

103. A clock with an iron pendulum keeps correct time at $20^{\circ} C$. How much will it lose or gain, if temperature changes to $40^{\circ} C$ ? Given that coefficient of cubical expansion of iron $=$ $\left(36 \times 10^{-6}\right)^{\circ} C^{-1}$

## D Watch Video Solution

104. A glass tube of length 133 cm and of uniform cross section is to be filled with mercury, so that the volume of the tube
unoccupied by mercury remains the same at all temperatures. If coefficients of cubical expansion for glass and mercury are respectively $\quad\left(2.6 \times 10^{-5}\right)^{\circ} C^{-1} \quad$ and
$\left(18.2 \times 10^{-5}\right)^{\circ} C^{-1}$, calculate the length of mercury column.

## D Watch Video Solution

105. A one litre flask contains some mercury. It
is found that at different temperatures the
volume of air inside the flask remains the
same. The volume of mercury in the flask is
$\left(\alpha_{\text {glass }}=\left(9 \times 10^{-6}\right)^{\circ} C^{-1}, \quad\right.$ gamma_( Hg$)=$ $\left(1.80 \times x 10^{\wedge}-4\right)^{\wedge} @ C^{\wedge}-1^{`}$

## D Watch Video Solution

106. A metallic bob weights 50 g in air. If it is
immersed in a liquid at a temperature of $25^{\circ} C$, it weights 45 g . When the temperature of the liquid is raised to $100^{\circ} \mathrm{C}$, it weights 45.1
g. Calculate the coefficient of cubical expansion of the liquid. Given that coefficient
of cubical expansion of the metal is $\left(12 \times 10^{-6}\right)^{\circ} C^{-1}$

## D Watch Video Solution

107. A sphere of diameter 7.0 cm and mass
266.5 g floats in a bath of liquid. As the temperature is raised, the sphere begins to sink at a temperature of $35^{\circ} \mathrm{C}$. If the density of liquid is $1.527 \mathrm{gcm}^{-3}$ at $0^{\circ} C$, find the coefficient of cubical expansion of the liquid.

Neglect the expansion of the sphere
108. Water flows at the rate of
$0.1500 \mathrm{~kg} / \mathrm{min}$ through a tube and is heated by a heater dissipating 25.2 W . The inflow and outflow water temperatures are $15.2^{\circ} \mathrm{C}$ and $17.4^{\circ} C$, respectively. When the rate of flow is increased to $0.2318 \mathrm{~kg} / \mathrm{min}$ and the rate of heating to 37.8 W , the inflow and outflow temperature are unaltered. Find the specific heat capacity of water.

## D Watch Video Solution

109. Water flows at the rate of
$0.1500 \mathrm{~kg} / \mathrm{min}$ through a tube and is heated
by a heater dissipating 25.2 W . The inflow and
outflow water temperatures are $15.2^{\circ} \mathrm{C}$ and
$17.4^{\circ} C$, respectively. When the rate of flow is
increased to $0.2318 \mathrm{~kg} / \mathrm{min}$ and the rate of
heating to 37.8 W , the inflow and outflow temperature are unaltered. Find the rate of loss of heat from the tube.
110. Ice at $0^{\circ} C$ is added to 200 g of water initially at $70^{\circ} C$ in a vacuum flask. When 50 g of ice has been added and has all melted the temperature of the flask and contents is $40^{\circ} \mathrm{C}$
. When a further 80 g of ice has been added and has all melted the temperature of the whole becomes $10^{\circ} \mathrm{C}$. Find the latent heat of fusion of ice.

## D Watch Video Solution

111. A lump of ice of 0.1 kg at $-10^{\circ} \mathrm{C}$ is put in
0.15 kg of water at $20^{\circ} \mathrm{C}$. How much water and ice will be found in the mixture whenit has reached thermal equilibrium? Specific heat of ice $=\left(0.5 k \mathrm{calkg}^{-1}\right)^{\circ} C^{-1}$ and its latent heat of melting $=80 \mathrm{kcalkg}^{-1}$

## D Watch Video Solution

## Exercise

1. Do the values of coefficients of expansion differ, when the lengths are measured in cgs system or in SI ?

## D Watch Video Solution

2. What is the effect of temperature on solids?

And also define coefficients of linear,
superficial and cubical expansion and write relation between them.
3. What is meant by coefficient of linear and
cubical expansion? Derive the relation between the two.

## D Watch Video Solution

4. Show that $\alpha=\frac{\beta}{2}=\frac{\gamma}{3}$, where symbols have their usual meanings.

D Watch Video Solution
5. What is meant by coefficient of linear expansion, superficial expansion and cubical expansion? Derive the relation between them.

## D Watch Video Solution

6. Are coefficients of thermal expansion constant for a given solid?
7. What is thermal expansion ? Explain thermal expansion on the basis of intermolecular forces.

## - Watch Video Solution

8. How does the density of liquids vary with temperatury? Show that on increasing temperature by $\Delta T$ density of a liquid is given by $(\rho)^{\prime}=\rho(1-\gamma \Delta T)$ where $\rho$ is initial
density of the liquid and $\gamma$ is its coefficient of cubical expansion.

## D Watch Video Solution

9. Describe an experiment to show that water has its maximum density at $4^{\circ} C$.

## - Watch Video Solution

10. At what temperature, the density of water
11. What is anomalous expansion of water and
its use in nature?

- Watch Video Solution

12. Define Heat

## 13. Define temperature

## D Watch Video Solution

14. Define thermal capacity

D Watch Video Solution
15. Define water equivalant
16. Define specific heat.

## D Watch Video Solution

17. Define latent heat.

D Watch Video Solution
18. Define specific heat of a substance. Give its units.

# 19. Define latent heat of fusion of a substance 

Give its SI units.

D Watch Video Solution
20. State and explain principle of calorimetry.

## - Watch Video Solution

21. Define what is meant by coefficient of linear superficial and cubical expansion of a solid. give its units. find the relationship between them

## D Watch Video Solution

22. What is meant by coefficient of linear expansion, superficial expansion and cubical expansion? Derive the relation between them.

## 23. State and explain principle of calorimetry.

## - Watch Video Solution

24. Define latent heat.

- Watch Video Solution

