©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

Viscosity

Example

1. A plate of metal 100 cm in area rests on a
layer of castor oil 2 mm thick, whose
coefficient of viscosity is 15.5 poise. Calculate
the horizontal force.nrequired to move the plate with a uniform speed of $3 \mathrm{cms}^{-2}$

D Watch Video Solution

2. A capillary tube of 1 mm in diameter and 20
cm in length is fitted horizontally to a vessel
kept full of alcohol. The depth of the centre of
the capillary tube below the surface of alcohol
is 20 cm . If the viscosity and density of alcohol are 0.012 cgs unit and $0.8 \mathrm{gcm}^{-3}$ respectively,
find the amount of the alcohol that will flow out in 5 minutes. Given that $\mathrm{g}=980 \mathrm{cms}^{-2}$

D Watch Video Solution

3. An iron ball of radius 0.3 cm falls through oil of density $0.94 \mathrm{gcm}^{-3}$. It attains a terminal velocity of $0.5 \mathrm{~cm} \mathrm{~s}^{-1}$. Determine the viscosity of the oil. Given density of iron $=7.8 \mathrm{~g} \mathrm{~cm}{ }^{-3}$
4. A force of 160 dyne is required to move a metal plate having an area of $0.02 m^{2}$ with a constant speed of $5 \mathrm{cms}^{-1}$ over a liquid film 1 mm thick. Find the coefficient of viscosity of the liquid.

D Watch Video Solution

5. A square plate of 10 cm side moves parallel to another plate with a velocity of $10 \mathrm{cms}^{-1}$, both plates immersed in water. If the viscous
force is 200 dyne and viscosity of water is 0.01 poise, what is their distance apart?

D Watch Video Solution

6. Check the dimensional consistency of the poiseuille's formula for the laminar flow in a tube: $V=\left(\right.$ piR$\left.^{\wedge}(4)\left(p_{-} 1-p_{-} 2\right)\right) /(8 e t a l)$ for laminar
flow in a tube, where the symbols V, r,
$\left(p_{1}-p_{2}\right)$ and I are respectively volume of
liquid flowing per second, radius of the tube,
pressure difference, coefficient of viscosity and length of the tube.

D Watch Video Solution

7. The radius of a pipe carrying a liquid gets decreased by 5% because of deposits on the inner surface. By how much would the pressure difference between the ends of the constricted pipe have to be increased to maintain a constant flow rate?
8. An engineer wants to have the same flow rate of water and light machine oil from the pipes of the same length and with the same pressure head. What should be ratio of the radii of the two pipes? Given that viscosity of water- 0.01 poise and that of light machine oil11 poise.

D Watch Video Solution

9. In a hospital, a patient receives a $500 \mathrm{~cm}^{3}$ blood transfusion through a needle with a length of 5 cm and inner radius of 0.03 cm . If the blood bag is kept 85 cm above the needle, how long the transfusion takes place? Given that the viscosity of blood is 0.017 poise and the density of blood is $1.02 \mathrm{gcm}^{-3}$

- Watch Video Solution

10. In giving a patient a blood transfusion, the bottle is set up so that the level of blood is 1.3 m above the needle, which has an internal diameter of 0.36 mm and 3 cm in length. If
$4.5 \mathrm{~cm}^{3}$ of blood passes through the meedle in one minute, calculate the viscosity of blood.

The density of blood is $1050 \mathrm{kgm}^{-3}$.

- Watch Video Solution

11. In Millikan's oil drop experiment, what is the terminal speed of an uncharged drop of radius $2.0 \times 10^{5} \mathrm{~m}$ and density $1.2 \times 10^{3} \mathrm{kgm}^{-3}$.

Take the viscosity of air at the temperature of
the experiment to be $1.8 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}$. How much is the viscous force on the drop at that speed ? Neglect buoyancy of the drop due to air

- Watch Video Solution

12. Eight rain drops of radius 1 mm each falling downwards with a terminal velocity of Sems coalesce to form a bigger drop. Find the terminal velocity of the bigger drop.

D Watch Video Solution

13. With what terminal velocity will an air bubble 0.8 m in diameter rise in a liquid of viscosity 0.15 Ns $\mathrm{m}^{\wedge}-2^{`}$ and specific gravity 0.9 ?

What is the terminal velocity fo the sam ebubble in water?

D Watch Video Solution

14. An oil drop falls through air with a terminal
velocity of $5 \times 10^{-4} m s^{-1} \quad$ Calculate the
radius of the drop. Viscosity of air-
$1.8 \times 10^{-5} \mathrm{Nsm}^{-2}$, density of oil $=900 \mathrm{kgm}^{-3}$

Neglect density of air as compared to that of the oil.

D Watch Video Solution

15. An oil drop falls through air with a terminal
velocity of $5 \times 10^{-4} m s^{-1} \quad$ Calculate the terminal velocity of a drop of half of this radius. Viscosity of air- $1.8 x 10^{-5} \mathrm{Nsm}^{-2}$, density of oil $=800 \mathrm{kgm}^{-3}$ Neglect density of air as compared to that of the oil.

- Watch Video Solution

16. Why is that a liquid set in motion comes to rest after some time?

- Watch Video Solution

17. Two flasks, one containing water and other glycerine, are stirred rapidly and kept on the table. Which liquid will come to rest earlier than the other?

- Watch Video Solution

18. If honey and water are dropped out of a
tube seperately the honeycomes out later
than water.Why?

D Watch Video Solution

19. The velocity of water in a river is less on the bank and large in the middle. Explain, why.

- Watch Video Solution

20. When water flows through a pipe, which
layer moves fastest?

D Watch Video Solution
21. Why is it that we need a constant driving force for maintenance of the flow of oil through pipe-lines in oil refineries?

D Watch Video Solution
22. What is SI unit of viscosity?
23. Define one decapoise.

D Watch Video Solution

24. Give relationship between poise and decapoise.

D Watch Video Solution

25. The dimensions of viscosity is same as
those of the product of pressure and time. Is
this correct?

D Watch Video Solution

26. Hotter liquids flow faster than cold liquids.

Why?

- Watch Video Solution

27. Why machines are sometimes jammed in winter?

D Watch Video Solution

28. Why high viscosity liquids are used buffers

 in trains?
- Watch Video Solution

29. In which liquid, the terminal velocity of an object will have lesser value-water or honey?

D Watch Video Solution

30. What is viscosity and coefficient of viscosity?

D Watch Video Solution
31. What is difference between friction and the viscosity?

- Watch Video Solution

32. Why does an object entering the earth's amosphere at high velocity catch fire?

D Watch Video Solution

33. Lubricant oil used in machines should be of
high vescosity.Why?

D Watch Video Solution
34. Why oils of different viscosities are used in automobiles in different seasons?

D Watch Video Solution

35. Two capillaries of same length but radii in
the ratio 1:2 are connected in series and a
liquid flows through this system under
streamline conditions. if the pressure across
the two extreme ends of the combination of
cube is 1 metre of water column what is a pressure difference across the first tube?

D Watch Video Solution

36. As soon as parachute of a falling soldier opens,his acceleration decreases and soon becomes zero. Why?

D Watch Video Solution
37. Explain, why a parachute is invariably used, while jumping from an aeroplane.

- Watch Video Solution

38. A bigger rain drop falls faster than a smaller one. Why ?

- Watch Video Solution

39. The radius of ball A is twice of than of ball B.What wll be ratio of their terminal velocities in water?

- Watch Video Solution

40. What is the weight of a body, when it falls
with terminal velocity through a viscous medium?

- Watch Video Solution

41. What is the terminal velocity in a horizontal direction for any object thrown through air?

- Watch Video Solution

42. What do you expect to happen to any object thrown downward at a velocity greater than its terminal velocity?
43. Explain, why rain drops falling under gravity do not acquire very high velocity.

D Watch Video Solution

44. Dust generally settles down in a closed room. Explain.

- Watch Video Solution

45. Why do the clouds seem floating in the sky

- Watch Video Solution

46. What is terminal velocity?

- Watch Video Solution

47. Why small air bubbles rises slowly through
the liquid whereas the bigger one rises rapidly?

- Watch Video Solution

48. What are practical applications of Stokes law?
(Watch Video Solution
49. What is the weight of a body, when it falls
with terminal velocity through a viscous medium?
50. A metal block of area $0.10 m^{2}$ is connected to a 0.010 kg mass via a string that passes over an ideal pulley (considered massless and
frictionless) as in fig.A liquid with a film thickness of 0.30 mm is placed between the block and the table.When released,the block moves ot the right with a constant speed of $00.085 \mathrm{~ms}^{-1}$.Find the coefficient of viscosity of the liquid.
51. In an experiment with Poiseuille's apparatus, the following figures were observed. Volume of liquid collected per minute $15 \mathrm{~cm}^{3}$ head of liquid -30 cm , length of tube- 25 cm , diameter of tube 0.2 cm density of liquid $2.3 \mathrm{gcm}^{-3}$ Find the coefficient of visocity.

D Watch Video Solution

52. A liquid flows through a pipe of 1.0 mm radius and 10 cm length under a pressure of
$10^{4} d y \neq c m^{-2}$. Calculate the rate of flow and the speed of the liquid coming out of the tube The coefficient of viscosity of the liquid is 1.25 centipoise.

- Watch Video Solution

53. A drop of water of diameter 0.02 mm is falling through a medium, whose density is $1.21 \times 10^{3} \mathrm{kgm}^{-3}$ and coefficient of viscosity is 1.8×10^{-9} poise. Find the terminal velocity of the drop.

Watch Video Solution

54. Find the terminal velocity of a steel ball 2 mm in diameter falling through glycerine.

Given that specific gravity of steel- 8 , specific gravity of glycerine-1.3, viscosity of glycerine -3.3 poise

D Watch Video Solution

55. A ball bearing of radius 1.5 mm made of iron of density $7.85 \mathrm{gcm}^{-3}$ is allowed to fall
through a long column of glycerine of density
$1.25 \mathrm{gcm}^{-3}$ It is found to attain a terminal
velocity of $2.25 \mathrm{cms}^{-1}$ Determine the viscosity of glycerine in centipoise.

D Watch Video Solution

Exercise

1. Explain the term viscosity.

D Watch Video Solution

2. Dimensional formula for the coefficient of

 viscosity is :
D Watch Video Solution

3. What is viscosity and coefficient of viscosity?

- Watch Video Solution

4. What are the various factors on which the
flow of liquid through a narrow tube depend.

- Watch Video Solution

5. What is terminal velocity?

- Watch Video Solution

6. Define terminal velocity and find an expression for it.
7. What is the difference between viscosity and
friction? Derive the expression for the terminal
velocity of a sphere falling through a viscous fluid.

- Watch Video Solution

8. What is Stokes' law? Derive the relation by method of dimensions.
9. Why small air bubbles rises slowly through
the liquid whereas the bigger one rises rapidly?

- Watch Video Solution

10. What is viscosity and coefficient of viscosity?
(D) Watch Video Solution
11. What is the difference between viscosity and friction? Derive the expression for the terminal velocity of a sphere falling through a viscous fluid.

- Watch Video Solution

12. Define coefficient of viscosity. Give its unit.

- Watch Video Solution

13. Define terminal velocity and find an expression for it.

D Watch Video Solution
14. What is the difference between viscosity and friction? Derive the expression for the terminal velocity of a sphere falling through a viscous fluid.
15. An air bubble of 1 cm radius is rising at a steady rate of $0.5 \mathrm{cms}^{-1}$ through a liquid of density $0.81 \mathrm{gcm}^{-3}$. Calculate the coefficient of viscosity of the liquid. The density of air may be neglected.

D Watch Video Solution

16. Determine the radius of a drop of water falling through air, if it covers 4.1 cm in 4 seconds with a uniform velocity. Assume
density of air is $0.001293 \mathrm{gcm}^{-3}$ and η for air is 1.8×10^{-4} poise.

- Watch Video Solution

17. Two capillary tubes of lengths 15 cm and 5 cm and radii 0.06 cm and 0.02 cm repectively are connected in series. If the pressure difference across the end faces is equal to pressure of 15 cm high water column, then find the pressure difference across the first tube.
18. Two capillary tubes of lengths 15 cm and 5 cm and radii 0.06 cm and 0.02 cm repectively are connected in series. If the pressure difference across the end faces is equal to pressure of 15 cm high water column, then find the pressure difference across the second tube

D Watch Video Solution

19. Two capillary tubes $A B$ and $B C$ are joined end to end at point $B . A B$ is 16 cm long and of diameter $4 \mathrm{~mm} . \mathrm{BC}$ is 4 cm long and of diameter 2 mm . The composite tube is held horizontally as in Poiseuille's experiment with

A connected to a vessel of water giving a constant head of 3 cm and C is open to air.

Calculate pressure difference between B and C

Watch Video Solution

20. Show that if two capillaries if radii $r_{-}(1)$ and r_(2) having lenths I_(1)and I_(2) respectively are set in series ,the rate of flow Q is given by $Q=\frac{\pi p}{8 \eta\left[l_{1} / r_{1}^{4}+l_{2} / r_{2}^{4}\right]^{\prime}}$ where p is the pressure difference across the arrangement and eta is the cofficient of viscosity of the liquid.

D Watch Video Solution

21. The rate of flow of the liquid through the tube of length I and radius r, connected across
a perssure head h be V. If two tubes of the same length but of radius r and $r / 2$ are connected in series, across the same pressure head h, find the rate of flow of liquid through the combination.

- Watch Video Solution

22. The rate of flow of the liquid through the tube of length I and radius r, connected across
a perssure head h be V. If two tubes of the same length but of radius r and $r / 2$ are connected in parallel, across the same pressure head h, find the rate of flow of liquid through the combination.

- Watch Video Solution

23. Three capillaries of length L, (L/2) and (L/3)
are connected in a series. Their radii are r, ($r / 2$)
and $(r / 3)$ respectively. If a streamlined flow is to be maintained and pressure difference across the first capillary is ρ, then the pressure difference across the second capillary will be

D Watch Video Solution

24. The level of liquid in a cylindrical vessel is
kept constant at 30 cm . It has three identical
horizontal tubes A, B and C of length 40 cm each coming out at heights 0,5 and 10 cm respectively. Calculate the length of a single overflow tube of the same radius as that of identical tubes which can replace the three when placed horizontally at the bottom of the cylinder.

D Watch Video Solution

25. Emery powder particles are stirred up in a beaker of water 0.1 m deep. Assuming the
particles to be spherical and of all sizes, calculate the radius of the largest particle remaining in suspension after 24 hours. Given that density of emery is $4000 \mathrm{kgm}^{-3}$ and coefficient of viscosity of water is 0.001 decapoise

D Watch Video Solution

26. Two equal drops of water are falling through air with a steady velocity of $10 \mathrm{cms}^{-1}$

If drops recombine to form a single drop , what will be new terminal velocity ?

- Watch Video Solution

