©゙" doubtnut

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

DIFFERENTIAL EQUATIONS

Example

1. Find the order and degree, if defined, of each of the following
differential equations:
(i) $\frac{d y}{d x}-\cos x=0$
(ii) $x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$
(iii) $y^{\prime \prime}{ }^{\prime}+y^{2}+e^{y \prime}=0$

D Watch Video Solution
2. Verify that the function $y=e^{-3 x}$ is a solution of the differential equation
$\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$

- Watch Video Solution

3. Verify that the function $y=b \cos x+a \sin x$, where a and $b \in R$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$

- Watch Video Solution

4. From the differential equation representing the family of curves
$y=n x$, where n is an arbitrary constant.
5. From the differential equation representing the family of curves $y=a \sin (x+b)$, where a, b are arbitrary constants.

- Watch Video Solution

6. Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin.

- Watch Video Solution

7. Form the differential equation of all circles touching the x-axis at the origin and center on y-axis.

- Watch Video Solution

8. From the differential equation of the family of parabolas having vertex at the origin and axis along positive direction of x-axis.

- Watch Video Solution

9. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{x+1}{2-y},(y \neq 2)$.

- Watch Video Solution

10. Find the general solution of the differential equation
$\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.

- Watch Video Solution

11. Find the particular solution of the differential equation $\frac{d y}{d x}=-4 x y^{2}$ given that $\mathrm{y}=1$, when $\mathrm{x}=0$.

- Watch Video Solution

12. Find the equation of the curve passing through the point $(1,1)$ whose differential equation is $\mathrm{xdy}=\left(2 x^{2}+1\right) d x(x \neq 0)$.

- Watch Video Solution

13. Find the equation of a curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$.
14. In a bank, principal increases continuously at the rate of 5% per year.In how many years Rs 1000 double itself?

- Watch Video Solution

15. Show that the differential equation $(x-y) \frac{d y}{d x}=x+2 y$ is homogeneous and solved it.

- Watch Video Solution

16. Show that the differential equation
$x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ is homogeneous and solve it.

- Watch Video Solution

 $2 y e^{\frac{x}{y}} d x+\left(y-2 x e^{\frac{x}{y}}\right) d y=0$ is homogeneous and find its particular solution, given that, $\mathrm{x}=0$ when $\mathrm{y}=1$.
- Watch Video Solution

18. Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{x^{2}+y^{2}}{2 x y}$, is given by $x^{2}-y^{2}=C x$

- Watch Video Solution

19. Find the general solution of the differential equation $\frac{d y}{d x}-y=\cos x$.

- Watch Video Solution

20. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$.

- Watch Video Solution

21. Find the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$.

- Watch Video Solution

22. Find the particular solution of the differential equation $\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x(x \neq 0)$ given that $\mathrm{y}=0$ when $x=\frac{\pi}{2}$.

- Watch Video Solution

23. Find the equation of the curve passing through the point $(0,1)$, if the slope of the tangent to the curve at any point (x, y), is equal to the sum of x coordinate and product of x coordinate and y coordinate of that point.

- Watch Video Solution

Miscellaneous Examples

1. Verify that the function $y=c_{1} e^{a x} \cos b x+c_{2} e^{a x} \sin b x$, where c_{1}, c_{2} are arbitrary constants is a solution of the differential
equation
$\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$

- Watch Video Solution

2. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

- Watch Video Solution

3. Find the particular solution of the differential equations log $\left(\frac{d y}{d x}\right)=3 x+4 y$ given that $\mathrm{y}=0$ when $\mathrm{x}=0$.

- Watch Video Solution

4. Solve the differential equation
$(x d y-y d x) y \sin \left(\frac{y}{x}\right)=(y d x+x d y) x \cos \left(\frac{y}{x}\right)$.

- Watch Video Solution

5. Solve the differential equation $\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$.

- Watch Video Solution

Exercise 91

1. Determine order and degree (if defined) of differential equations given in Exercises 1 to 10
(1) $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$

(Watch Video Solution

2. $y^{\prime}+5 y=0$

- Watch Video Solution

3. Determine order and degree (if defined) of differential equations given in

$$
\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0
$$

- Watch Video Solution

4. Determine order and degree (if defined) of differential equations given in
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\cos \left(\frac{d y}{d x}\right)=0$

(D) Watch Video Solution

5. Determine order and degree (if defined) of differential
equations given in
$\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$
6. Determine order and degree (if defined) of differential equations given in
$\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$

D Watch Video Solution

7. Determine order and degree (if defined) of differential equations given in
$y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$

- Watch Video Solution

8. Determine order and degree (if defined) of differential
equations given in
$y^{\prime}+y=e^{x}$

(Watch Video Solution

9. $y+\left(y^{\prime}\right)^{2}+2 y=0$

- Watch Video Solution

10. $y+2 y^{\prime}+\sin y=0$

- Watch Video Solution

11. The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+1=0$ is
A. 3
B. 2
C. 1
D. not defined

Answer: D

- Watch Video Solution

12. The order of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is
A. 2
B. 1
C. 0
D. not defined

Answer: A

Exercise 92

1. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation :
$y=e^{x}+1: y^{\prime}-y^{\prime}=0$

- Watch Video Solution

2. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation :
$y=\cos x+C: y^{\prime}+\sin x=0$

- Watch Video Solution

3. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation
$y=\sqrt{1+x^{2}}: y^{\prime}=\frac{x y}{1+x^{2}}$

- Watch Video Solution

4. Verify the differential equation $y=A x: x y^{\prime}=y(x \neq 0)$

- Watch Video Solution

$$
\begin{aligned}
& \text { 5. Verify } \\
& \text { 5. the } \\
& y=x \sin x: x y^{\prime}=y+x \sqrt{x^{2}-y^{2}}(x \neq 0 \text { and } x>y \text { or } x<-y)
\end{aligned}
$$

- Watch Video Solution

6. $x y=\log y+C: y^{\prime}=\frac{y^{2}}{1-x y}(x y \neq 1)$

- Watch Video Solution

7. $y-\cos y=x:(y \sin y+\cos y+x) y^{\prime}=y$

- Watch Video Solution

8. $x+y=\tan ^{-1} y: y^{2} y^{\prime}+y^{2}+1=0$

D Watch Video Solution

9. $y=\sqrt{a^{2}-x^{2}} x \neq(-a, a): x+y \frac{d y}{d x}=0(y \neq 0)$
10. The number of arbitrary constants in the general solution of a defferential equation of fourth order are
A. 0
B. 2
C. 3
D. 4

Answer: D

(Watch Video Solution

11. The number of arbitrary constants in the particular solution of a defferential equation of third order are
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

Exercise 93

1. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

$$
\frac{x}{a}+\frac{y}{b}=1
$$

- Watch Video Solution

2. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
$y^{2}=a\left(b^{2}-x^{2}\right)$

- Watch Video Solution

3. Form the differential equation from $y=A e^{3 x}+B e^{-2 x}$.

- Watch Video Solution

4. $y=e^{2 x}(a+b x)$

(Watch Video Solution

5. $y=e^{x}(a \cos x+b \sin x)$
6. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

- Watch Video Solution

7. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

- Watch Video Solution

8. From the differential equation representing the family of ellipses having focion x-axis and centre at the origin.

- Watch Video Solution

9. Form the differential equation of the family of hyperbolas havig foci on x-axis and centre at origin.

- Watch Video Solution

10. Form the differential equation of the family of circles having centre on y-axis and radius 5 units.

- Watch Video Solution

11. Which of the following differential equations has

$$
y=c_{1} e^{x}+c_{2} e^{-x} \text { as the general solution? }
$$

A. $\frac{d^{2} y}{d x^{2}}+y=0$
B. $\frac{d^{2} y}{d x^{2}}-y=0$
C. $\frac{d^{2} y}{d x^{2}}+1=0$
D. $\frac{d^{2} y}{d x^{2}}-1=0$

Answer: B

- Watch Video Solution

12. Which of the following differential equations has $y=x$ as one of its particular solution?
A. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x$
B. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=x$
C. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0$
D. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=0$

Answer: C

1. For each of the differential equations in Exercises 1 to 10, find the general solution:
2. $\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$

(D) Watch Video Solution

2. $\frac{d y}{d x}=\sqrt{4-y^{2}}(-2<y<2)$

- Watch Video Solution

3. $\frac{d y}{d x}+y=1(y \neq 1)$
4. The solution of $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$ is

- Watch Video Solution

5. For each of the differential equations in
$\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

- Watch Video Solution

6. $\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

(Watch Video Solution

7. Differential equation $y \log y d x-x d y=0$
8. Differential equation $x^{5} \frac{d y}{d x}=-y^{5}$

D Watch Video Solution

9. $\frac{d y}{d x}=\sin ^{-1} x$

- Watch Video Solution

10. $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

(D) Watch Video Solution

11. For the differential equations, find a particular solution satisfying given condition;

$$
\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x, y=1 \text { when } \mathrm{x}=0
$$

Watch Video Solution

12. $x\left(x^{2}-1\right) \frac{d y}{d x}=1, y=0$ when $\mathrm{x}=2$.

(Watch Video Solution

13. $\cos \left(\frac{d y}{d x}\right)=a(a \neq R), y=2$ when $\mathrm{x}=0$

- Watch Video Solution

14. $\frac{d y}{d x}=y \tan x, y=1$ when $\mathrm{x}=0$

- Watch Video Solution

15. Find the equation of a curve passing through the point $(0,0)$ and whose differential equation is $y^{\prime}=e^{x} \sin x$.

- Watch Video Solution

16. For the differential equation $x y \frac{d y}{d x}=(x+2)(y+2)$, find the solution curve passing through the point (1, -1).

- Watch Video Solution

17. Find the equation of a curve passing through the point $(0,-2)$. Given that at any point (x, y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.
18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve, given that it passes through ($-2,1$).

- Watch Video Solution

19. The volume of spherical balloon being inflated changes at a constant rate.If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

- Watch Video Solution

20. In a bank, principal increases continuously at the rate of r \% per year.Find the value of r if $\operatorname{Rs} 100$ double itself in 10 years $\left(\log _{e} 2=0.6931\right)$.
21. In a bank, principal increases continuously at the rate of 5\% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$.

- Watch Video Solution

22. In a culture, the bacteria count is $1,00,000$. The number is increased by 10% in 2 hours. In how many hours will the count reach $2,00,000$ if the rate of growth of bacteria is proportional to the number present?

- Watch Video Solution

23. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{x}+e^{-y}=C$
B. $e^{x}+e^{y}=C$
C. $e^{-x}+e^{y}=C$
D. $e^{-x}+e^{-y}=C$

Answer: A

- Watch Video Solution

Exercise 95

1. Show that the given differential equation is homogeneous and solve each of them.
$\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

- Watch Video Solution

2. Solve the given differential equation.
$y^{\prime}=\frac{x+y}{x}$

- Watch Video Solution

3. $(x-y) d y-(x+y) d x=0$

- Watch Video Solution

4. $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

- Watch Video Solution

5. $x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$

- Watch Video Solution

6. $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

(Watch Video Solution

7.

$\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y$

- Watch Video Solution

8. $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
9. Show that the given differential equation is homogeneous and solve each of them.
$y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

- Watch Video Solution

10. $\left(1+e^{\frac{x}{y}}\right) d x+\frac{e^{x}}{y}\left(1-\frac{x}{y}\right) d y=0$

- Watch Video Solution

11. For each of the differential equations in find the particular solution satisfying the given condition :
$(x+y) d y+(x-y) d x=0, y=1$ when $x=1$
12. $x^{2} d y+\left(x y+y^{2}\right) d x=0, y=1$ when $\mathrm{x}=1$

- Watch Video Solution

13. $\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0, y=\frac{\pi}{4}$ when $\mathrm{x}=1$

- Watch Video Solution

14. For each of the differential equations in find the particular solution satisfying the given condition :
$\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0, y=0$ when $x=1$

- Watch Video Solution

15. For each of the differential equations in find the particular solution satisfying the given condition :
$2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0, y=2$ when $x=1$

(D) Watch Video Solution

16. A homogeneous differential equation of the from $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the substitution.
A. $y=v x$
B. $v=y x$
C. $x=v y$
D. $\mathrm{x}=\mathrm{v}$

Answer: C

17. Which of the following is a homogeneous differential equation?
A. $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
B. $(x y) d x-\left(x^{3}+y^{3}\right) d y=0$
C. $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
D. $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$

Answer: D

- Watch Video Solution

Exercise 96

1. Find the general solution:
$\cdot \frac{d y}{d x}+2 y=\sin x$
2. $\frac{d y}{d x}+3 y=e^{-2 x}$

- Watch Video Solution

3. solve each of the differential equations given in
$\frac{d y}{d x}+\frac{y}{x}=x^{2}$

- Watch Video Solution

4. For each of the differential equations given in
$\frac{d y}{d x}+\sec x . y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$

- Watch Video Solution

5. $\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(o \leq x \leq \frac{\pi}{2}\right)$

- Watch Video Solution

6. For each of the differential equations given in
$x \frac{d y}{d x}+2 y=x^{2} \log x$

(D) Watch Video Solution

7. $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$

- Watch Video Solution

8. $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$
9. Find a particular solution of the differential equation $\frac{d y}{d x}+y \cot x=4 x \cos e c x(x \neq 0)$, given that $\mathrm{y}=0$ when $x=\frac{\pi}{2}$.

- Watch Video Solution

10. For each of the differential equations given in
$(x+y) \frac{d y}{d x}=1$

- Watch Video Solution

11. $y d x+\left(x-y^{2}\right) d y=0$

- Watch Video Solution

12. $\left(x+3 y^{2}\right) \frac{d y}{d x}=y(y r t 0)$.

- Watch Video Solution

13. For each of the differential equations given in find a particular solution satisfying the given condition :
$\frac{d y}{d x}+2 y \tan x=\sin x, y=0$ when $x=\frac{\pi}{3}$

- Watch Video Solution

14. For each of the differential equations given in find a particular solution satisfying the given condition :

$$
\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}, y=0 \text { when } x=1
$$

- Watch Video Solution

15. $\frac{d y}{d x}=3 y \cot x=\sin 2 x, y=2$ when $x=\frac{\pi}{2}$
16. Find the equation of a curve passing through the origin, given that the slope of the tangent of the curve at any point (x, y) is equal to tha sum of the coordinates of the point.

(D) Watch Video Solution

17. Find the equation of a curve passing through the point $(0,2)$, given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .

- Watch Video Solution

18. The integrating factor of the fifferential equation $x \frac{d y}{d x}-y=2 x^{2}$ is
A. e^{-x}
B. e^{-y}
C. $\frac{1}{x}$
D. x

Answer: C

- Watch Video Solution

19. The integrating factor of the fifferential equation $\left(1-y^{2}\right) \frac{d y}{d x}+y x=a y\left(-1<y^{\prime}<1\right)$ is
A. $\frac{1}{y^{2}-1}$
B. $\frac{1}{\sqrt{y^{2}-1}}$
C. $\frac{1}{1-y^{2}}$
D. $\frac{1}{\sqrt{1-y^{2}}}$

Answer: D

- Watch Video Solution

Miscellaneous Exercise

1. For each of the differential equations given below, indicate its order and degree(if defined).
(i) $\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{2}-6 y=\log x$
(ii) $\left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x$
(iii) $\frac{d^{4} y}{d x^{4}}-\sin \left(\frac{d^{3} y}{d x^{3}}=0\right.$
2. For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.
$x y=a e^{x}+b e^{-x}+x^{2}: x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y+x^{2}-2=0$

- Watch Video Solution

3. Form the differential equation representing the family of curves given by $(x-a)^{2}+2 y^{2}=a^{2}$, where a is an arbitrary constant.

D Watch Video Solution

4. Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of differential equation $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$, where c is a parameter.

- Watch Video Solution

5. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.

- Watch Video Solution

6. Find the general solution of the differential equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$.

- Watch Video Solution

7. Show that the general solution of the differential equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ given by $(x+y+1)=A(1-x-y-2 x y)$, where A is parameter.
8. Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right)$ whose differential equation is $\sin \mathrm{x} \operatorname{cox} \mathrm{y} \mathrm{dx}+\cos \mathrm{x} \sin \mathrm{y}$ $d y=0$.

- Watch Video Solution

9. Find the particular solution of the differential equation
$\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0 . \quad$ Given that $y=1 \quad$ when $x=0$.

- Watch Video Solution

10. Solve the differential equation
$y \frac{e^{x}}{y} d x=\left(x \frac{e^{x}}{y}+y^{2}\right) d y(y \neq 0)$.

- Watch Video Solution

11. Find a particular solution of the differential equation $(x-y)(d x+d y)=d x-d y . \quad$ Given that $y=-1, \quad$ when $x=0$.

(Watch Video Solution

$$
\begin{aligned}
& \text { 12. Solve } \\
& \left.\begin{array}{l}
\text { the } \\
\sqrt{x} \\
{\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}\right.}
\end{array}\right] \frac{y}{d y}=1(x \neq 0)
\end{aligned}
$$

- Watch Video Solution

13. Find a particular solution of the differential equation $\frac{d y}{d x}+y \cot x=4 x \cos e c x(x \neq 0)$.
Given that $y=0$ when $x=\frac{\pi}{2}$.

- Watch Video Solution

14. Find a particular solution of the differential equation $(x+1) \frac{d y}{d x}=2 e^{-y}-1$, given that $y=0$ when $x=0$.

- Watch Video Solution

15. The population of a village increases continuously at the rate proportional to the number of its Inhabitants present at any time. It the population of the village was 20,000 in 1999 and 25,000 in the year 2004, what will be the population of the village in 2009 ?

- Watch Video Solution

16. The general solution of the differential equation $\frac{y d x-x d y}{y}=0$ is
A. $x y=C$
B. $x=C y^{2}$
C. $y=C x$
D. $y=C x^{2}$

Answer: C

- Watch Video Solution

17. The general solution of a differential equation of the type $\frac{d y}{d x}+P_{1} x=Q_{1}$ is
A. $Y e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
B. $y . e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+C$
C. $x e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int} P_{1} d x\right) d x+C$
D. $x e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+C$

Answer: C

- Watch Video Solution

18. The general solution of the differential equation $e^{x} d y+\left(y e^{x}+2 x\right) d x=0$ is
A. $x e^{y}+x^{2}=C$
B. $x e^{y}+y^{2}=C$
C. $y e^{x}+x^{2}=C$
D. $y e^{y}+x^{2}=C$

Answer: C

