©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OMEGA PUBLICATION

CONIC SECTIONS

Questions

1. Find the equation of the circle with

Centre (-2,3) and radius 4
2. Find the equation of the circle with

Centre ($-\mathrm{a}, \mathrm{b}$) and radius $\sqrt{a^{2}-b^{2}}$

D Watch Video Solution

3. In each of the following circles, find the centre and radius.
$(x+5)^{2}+(y-3)^{2}=36$

- Watch Video Solution

4. In each of the following circles, find the centre and radius.
$x^{2}+y^{2}-8 x+10 y-12=0$

D Watch Video Solution

5. In each of the following circles, find the centre and radius.
$2 x^{2}+2 y^{2}-x=0$

D Watch Video Solution
6. Find the equation of the circle passing through the points. $(2,-3)$ and ($-1,1$) whose centre is on the line $x-3 y-11=0$.

- Watch Video Solution

7. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.
8. Find the equation of the circle passing through $(0,0)$ and making intercepts 'a' and 'b' on the coordinate axes.

D Watch Video Solution

9. Find the equation of the circle with centre
$(2,2)$ and passes through the point $(4,5)$.

D Watch Video Solution

10. Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$?

D Watch Video Solution

11. In each of the following find the coordinates of the focus, axis of the parabola,
the equation of directrix and the length of the
latus rectum .
$y^{2}=12 x$
12. In each of the following find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum .
$y^{2}=-8 x$

D Watch Video Solution

13. In each of the following find the coordinates of the focus, axis of the parabola,
the equation of directrix and the length of the
latus rectum .
$x^{2}=6 y$

D Watch Video Solution

14. In each of the following find the coordinates of the focus, axis of the parabola,
the equation of directrix and the length of the
latus rectum .
$x^{2}=-9 y$

D Watch Video Solution
15. Find the equation of the parabola that satisfies given conditions :

Focus (6,0), directrix $x=-6$

- Watch Video Solution

16. Find the equation of the parabola that satisfies given conditions:

Focus ($0,-3$), directrix $y=3$
17. Find the equation of the parabola that satisfies given conditions:

Vertex (0, 0), focus ($-2,0$)

D Watch Video Solution

18. Find the equation of the parabola that satisfy the given conditions: Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to y-axis.
19. Find the coordinates of the foci the vertices
the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

- Watch Video Solution

20. Find the coordinates of the foci the
vertices the length of major axis, the minor axis, the eccentricity and the length of the
latus rectum of the ellipse.
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

- Watch Video Solution

21. Find the coordinates of the foci the vertices
the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$16 x^{2}+y^{2}=16$

- Watch Video Solution

22. Find the coordinates of the foci the vertices the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$4 x^{2}+9 y^{2}=36$

- Watch Video Solution

23. Find the equation for ellipse that satisfies
the given conditions
Vertices $(\pm 5,0)$, foci $(\pm 4,0)$
24. Find the equation for ellipse that satisfies
the given conditions

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

D Watch Video Solution

25. Find the eqation for the ellipse that satisfies the given conditions :

Length of major axis 26 , foci $(\pm 5,0)$
26. Find the eqation for the ellipse that satisfies the given conditions :

Length of major axis 16 , foci $(0, \pm 6)$

D Watch Video Solution

27. Find the equation for the ellipse that satisfies the given condition :

Centre at (0,0), major axis along.y-axis and passes through the points $(3,2)$ and $(1,6)$.
28. Find the equation for the ellipse that satisfies the given condition :

Major axis on the x-axis-an passes through the poiņts (4, 3) and (6,2).

- Watch Video Solution

29. Find the coordinates of the foci and the
vertices, the ecentricity and the length of the
latus rectum of the hyperbolas:
$16 x^{2}-9 y^{2}=576$

D Watch Video Solution
30. Find the coordinates of the foci and the vertices, the ecentricity and the length of the latus rectum of the hyperbolas:
$5 y^{2}-9 x^{2}=36$

D Watch Video Solution
31. Find the equations of the hyperbola satisfying the given conditions.

Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

D Watch Video Solution

32. Find the equations of the hyperbola satisfying the given conditions.

Vertices $(0, \pm 3)$ foci $(0, \pm 5)$
33. Find the equations of the hyperbola satisfying the given conditions.

Foci $(\pm 5,0)$ the transverse axis is of length 8.

D Watch Video Solution

34. Find the equations of the hyperbola satisfying the given conditions.

Foci $(0, \pm 13)$ the conjugate axis is of length 24.
35. Find the equation of the hyperbola satisfying the given conditions. Foci $(\pm 3 \sqrt{5}, 0)$ the latus rectum is of length 8.

D Watch Video Solution

36. Find the equation of hyperbola satisfying
the given conditions.
Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$

Important
 Questions
 From
 Miscellaneous

Exercise

1. If a parabolic reflector is 20 cm in diameter and 5 cm deep. Find the fous.

D Watch Video Solution

2. An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide
at the base. How wide is it 2 m from the vertex of the parabola?

- Watch Video Solution

3. Find the area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.

D Watch Video Solution
4. A rod of length 12 cm moves with its ends always touching the coordinates axes.

Determine the equation of the locus of a point P on the rod, which is 3 cm from the end-in contact with x-axis.

- Watch Video Solution

Multiple Choice Questions Mcqs

1. The vertex of the parabola $y^{2}=4 a x$ is
A. $(0,0)$
B. $(-9,0)$
C. $(9,0)$
D. none of these

Answer: A

D Watch Video Solution
2. Consider the equation of a parabola $y^{2}+4 a x=0$ where, $a>0$. Which of the following is false ?
A. Vertex of the parabola is at the origin
B. Focus of the parabola is at $(a, 0)$
C. Directrix of the parabola is $x=a$
D. Tangents at the vertex is $x=0$

Answer: B

- Watch Video Solution

3. The focus of the parabola $y=2 x^{2}+x$ is
A. $(0,0)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$
C. $\left(\frac{1}{-4}, 0\right)$
D. none of these

Answer: D

D Watch Video Solution

4. The equation of the parabola with the focus
$(3,0)$ and directrix $x+3=0$ is

$$
\text { A. } y^{2}=3 x
$$

B. $y^{2}=2 x$
C. $y^{2}=12 x$
D. $y^{2}=6 x$

Answer: C

D Watch Video Solution
5. The equation of the parabola with focus at
$(0,3)$ and the directrix $y+3=0$ is

$$
\text { A. } x^{2}=-12 y
$$

$$
\begin{aligned}
& \text { B. } x^{2}=12 y \\
& \text { C. } y^{2}=-12 x \\
& \text { D. } y^{2}=12 x
\end{aligned}
$$

Answer: B

- Watch Video Solution

6. If the parabola $y^{2}=4 a x$ passes through (3 ,

2), then the length of its latus rectum is
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{1}{3}$
D. 4

Answer: B

D Watch Video Solution

7. The locus of a point which moves so that its
distance from a fixed point, called focus, bears
a constant ratio, which is less than unity, to its
distance from a fixed line, called the directrix, is called
A. a parabola
B. a hyperbola
C. an ellipse
D. a circle

Answer: C
(Watch Video Solution
8. The foci of the ellipse $9 x^{2}+4 y^{2}=36$ are
A. $(-5,0)$
B. $(0, \pm \sqrt{5})$
C. $(\pm 5,0)$
D. $(0,-5)$

Answer: B

9. If the latus rectum of an ellipse is one half of

its minor-axis, then its. eccentricity is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{\sqrt{2}} \\
& \text { C. } \frac{\sqrt{3}}{2} \\
& \text { D. } \frac{\sqrt{3}}{4}
\end{aligned}
$$

Answer: C

D Watch Video Solution
10. The eccentricity of the conic
$9 x^{2}+25 y^{2}=225$ is
A. $\frac{2}{5}$
B. $\frac{4}{5}$
C. $\frac{1}{3}$
D. $\frac{1}{5}$

Answer: B

D Watch Video Solution
11. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$ are
A. $(\pm 4,0)$
B. $(0, \pm 4)$
C. $(\pm 5,0)$
D. $(0, \pm 5)$

Answer: C

D Watch Video Solution
12. If $\mathrm{P}(\mathrm{x}, \mathrm{y}), F_{1}(3,0)$ and $F_{2}(-3,0)$ and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equals
A. 8
B. 6
C. 10
D. 12

Answer: C

- Watch Video Solution

13. If the major axis of an ellipse is thrice the minor axis, then its eccentricity is equal to
A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{2 \sqrt{2}}{3}$

Answer: D

D Watch Video Solution
14. The latus rectum of the hyperbola
$16 x^{2}-9 y^{2}=144$ is

> A. $\frac{16}{3}$
> B. $\frac{32}{3}$
> C. $\frac{8}{3}$
> D. $\frac{4}{3}$

Answer: B

D Watch Video Solution
15. The area of a circle centred at (1,2) and passing through $(4,6)$ is
A. 5π sq. units
B. 15π sq. units
C. 25π sq. units
D. 30π sq. units

Answer: C
(Watch Video Solution
16. The equation of a circle with centre at $(1,0)$ and circumference 10π units is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 x+24=0 \\
& \text { B. } x^{2}+y^{2}-x-25=0 \\
& \text { C. } x^{2}+y^{2}-2 x-24=0 \\
& \text { D. } x^{2}+y^{2}-2 y+24=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

17. The equation of the circle whose centre is
$(0,0)$ and which passes through the point $(4,-5)$ is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=41 \\
& \text { B. } x^{2}+y^{2}=-41 \\
& \text { C. } x^{2}+y^{2}=4 \\
& \text { D. } x^{2}+y^{2}=7
\end{aligned}
$$

Answer: A

- Watch Video Solution

18. The ends of diameter of a circle are $(2,3)$,

$(6,5)$. The centre of the circle is
A. $(3,0)$
B. $(8,8)$
C. $(4,4)$
D. $(2,2)$

Answer: C
(Watch Video Solution
19. The centre and radius of the circle $x^{2}+(y-1)^{2}=2$ are
A. $(1,0), \sqrt{3}$
B. $(0,1), \sqrt{2}$
C. $(0,2), \sqrt{2}$
D. none of these

Answer: B

D Watch Video Solution
20. The eccentricity 'e' of a parabola is
A. <1
B. >1
C. $=1$
D. 0

Answer: B
21. The equation of the directrix of the parabola $x^{2}=-4 a y$ is
A. $x+a=0$
B. $x-a=0$
C. $y+a=0$
D. $y-a=0$

Answer: C
(Watch Video Solution
22. The length of the latus rectum of the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is

$$
\begin{aligned}
& \text { A. } \frac{2 a^{2}}{b} \\
& \text { B. } \frac{2 b^{2}}{a} \\
& \text { C. } \frac{b^{2}}{a} \\
& \text { D. } \frac{a^{2}}{b}
\end{aligned}
$$

Answer: D

- Watch Video Solution

23. If e is the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a<b)$, then
A. $b^{2}=a^{2}\left(1-e^{2}\right)$
B. $a^{2}=b^{2}\left(1-e^{2}\right)$
C. $a^{2}=b^{2}\left(e^{2}-1\right)$
D. $b^{2}=a^{2}\left(e^{2}-1\right)$

Answer: A

D Watch Video Solution
24. The latus rectum of the ellipse $5 x^{2}+9 y^{2}=45$ is

$$
\begin{aligned}
& \text { A. } \frac{10}{3} \\
& \text { B. } \frac{5}{3} \\
& \text { C. } \frac{5 \sqrt{5}}{3} \\
& \text { D. } \frac{10 \sqrt{5}}{3}
\end{aligned}
$$

Answer: B

D Watch Video Solution

25. If $(x, 4)$ and $(2,8)$ are the extremities of a diameter of circle with.centre.at $(4, y)$ then the
value of x and y are

$$
\begin{aligned}
& \text { A. } x=6, y=2 \\
& \text { B. } x=6, y=5 \\
& \text { C. } x=6, y=3 \\
& \text { D. } x=6, y=6
\end{aligned}
$$

Answer: D

D Watch Video Solution
26. For the ellipse $\frac{x^{2}}{1}+\frac{y^{2}}{4}=1$ the latus rectum
A. $1 / 2$
B. 1
C. 2
D. 4

Answer: B
(D) Watch Video Solution

