

MATHS

BOOKS - OMEGA PUBLICATION

RELATIONS AND FUNCTIONS

1. If
$$\left(rac{x}{3}+1,y-rac{2}{3}
ight)=\left(rac{5}{3},rac{1}{3}
ight)$$
 , find the values of x

and y

2. If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then

find the number of elements in $(A \times B)$.

5. If $A \times B$ = {(a, x).(a , y). (b, x), (b, y)}. Find A and B.

7. Let A= {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}.

Verify that $A imes (B\cap C)=(A imes B)\cap (A imes C).$

Watch Video Solution

8. Let A= {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}.

Verify that A imes C is a subset of B imes D.

9. Let A = {1, 2} and B = {3, 4}. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Watch Video Solution

10. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by R =

 $\{(x, y) : 3x-y= 0, where x, y \in A\}$. Write down its domain,

codomain and range.

11. A = {1, 2, 3, 5} and B= {4, 6, 9}. Define a relation R Ifom A to

B by $R = \{(x,y): the difference between x and y is odd,$

 $x \in A, y \in B$ }. Write R in roster form.

defined by $R = \{(x, x + 5) : x \in \{0, 1, 2, 3, 4, 5\}\}.$

Watch Video Solution

13. Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations

from A to B.

14. Which of the following relation are function ? Given

reason

 $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Watch Video Solution

15. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range. $\{(1, 3), (1, 5), (2, 5)\}.$

16. Find the range of -|x|

17. Find the domain and range of the following real

function:-
$$f(x) = \sqrt{9-x^2}$$

Watch Video Solution

18. Find the range of the following function: $f(x)=2-3x, x\in R, x>0.$

Watch Video Solution

19. Find the range of the following function: $f(x) = x^2 + 2$, x is a real number.

Important Questions From Miscellaneous Exercise

1. Let f g :
$$R o R$$
 be defined, respectively by $f(x) = x + 1, \, g(x) = 2x - 3.$ Find $f + g, \, f - g$ and $rac{f}{g}$.

Watch Video Solution

2. Let $f(x) = \sqrt{x}$ and g(x) = x be two function defined

over the set of non-negative real numbers . Find (f+g)(x), (f-g)(x), (fg)(x) and $\Big(rac{f}{g}\Big)(x)$

3. The relation 'f' is defined by $f(x) = \begin{cases} x^2 & 0 \le x \le 3\\ 3x & 3 \le x \le 10 \end{cases}$ The relation 'g' is defined by $g(x) = \begin{cases} x^2 & 0 \le x \le 2\\ 3x & 2 \le x \le 10 \end{cases}$ Show that 'f' is a function and 'g' is not a function.

6. Find the domain and the range of the real function 'f' defined by $f(x) = \sqrt{(x-1)}$.

View Text Solution

9. Let f = {(1,1), (2,3), (0,-1), (-1, -3)} be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.

10. Let R be a relation from N to N defined by $R = \left\{(a,b): a, b \in N ext{ and } a = b^3
ight\}$. Are the following true ?

 $(a,a)\in R, \;\; ext{for all}\;\;\; a\in N$

Watch Video Solution

11. Let R be a relation from N to N defined by $R=ig\{(a,b)\!:\!a,b\in N ext{ and } a=b^3ig\}$. Are the following

true ?

 $(a,b)\in R ext{ implies } (b,a)\in R$

12. Let R be a relation from N to N defined by $R = \{(a, b) : a, b \in N \text{ and } a = b^2\}$. Is the following true? $(a, b) \in R, (b, c) \in R$ implies $(a, c) \in R$. Justify your answer

Watch Video Solution

MCQ

1. If A = $\{2,4,5\}, B = \{7,8,9\}$ then n(A imes B) is equal to

A. 6

B. 9

C. 3

D. 0

Answer: B

2. If A = {0,1} and B = {1,0} , then $A \times B$ is equal to

A. $\{0, 1, 1, 0\}$

 $\mathsf{B}.\,\{(0,\,1),\,(1,\,0)\}$

 $C. \{0, 0\}$

 $\mathsf{D}.\,\{(0,\,1),\,(0,\,0),\,(1,\,1),\,(1,\,0)\}$

Answer: D

Watch Video Solution

3. Let O(A) = m, O(B) = n. Then the number of relations

from A to B is

A. mn

B. m + n

 $C. 2^{mn}$

 $\mathsf{D.}\, 2^{m+n}$

Answer: C

4. A relation R on a set A is called an equivalence relation

iff

A. it is reflexive

B. it is symmetric

C. it is transitive

D. it is reflective, symmetric and transitive

Answer: D

5. If r is a relation on a finite set having n elements, then the number of relation on A is

A. 2^n B. 2^{n^2} C. n^2

D. n^n

Answer: B

6. Let A be a set containing 10 distinct elements. Then the total number of distinct functions from A to A is:

A. 10!

 $B.\,10^{10}$

 $\mathsf{C.}\,2^{10}$

 $\mathsf{D.}\,2^{10}-1$

Answer: B

Watch Video Solution

7. The domain of the function

 $f(x)=\sqrt{x-1}+\sqrt{6-x}$ is

A. $[1,\infty)$

B. $(-\infty, 6)$

C. [1,6]

D. none of these

Answer: C

8. Find domain for
$$y=rac{1}{\sqrt{|x|-x}}.$$

A. $[1,\infty)$

- B. $(-\infty, 0)$
- $\mathsf{C}.\,(\,-\infty,\,0]$
- D. $[1,\infty)$

Answer: B

- $(\,-\infty,\infty)$, then the range of function is
 - A. (∞,∞) B. $[-2,\infty)$ C. $(-2,\infty)$ D. $(-\infty,-2)$

Answer: B

10. The range of the function for real x of $y = rac{1}{2 - \sin 3x}$

is

A.
$$rac{1}{3}\leq y\leq 1$$

B. $-rac{1}{3}\leq y<1$
C. $-rac{1}{3}>y>1$
D. $rac{1}{3}>y>1$

Answer: A

Watch Video Solution

11. The range of
$$f(x)=rac{1+x^2}{x^2}$$

A. [0,1]

B. (0,1]

 $\mathsf{C}.\left(1,\infty
ight)$

 $\mathsf{D}.\left[1,\infty\right)$

Answer: C

Watch Video Solution

12.
$$f(x) = rac{|x|}{x}, x
eq 0$$
 then the value of function

A. 1

B. 0

C.-1D. $f(x)=egin{cases} 1, & x>0\ -1, & x<0 \end{cases}$

Answer: D

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

14. If $f(x)=rac{2x+1}{3x-2}$, then (fof) (2) is equal to

A. 1

B. 3

C. 4

D. none of these

Answer: D

O Watch Video Solution

15. The relation R defined on N as

 $ig\{(a,b)\!:\!a^2+b^2<16ig\}$ is given by

A. $\{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)\}$

 $\mathsf{B}.\left\{(1,1),\,(1,2),\,(1,3),\,(2,3),\,(2,4),\,(3,2),\,(3,3)\right\}$

C.

 $\{(1,1),(1,2),(2,1),(1,3),(3,1),(2,2),(2,3),(3,2)\}$

D. none of these

Answer: C

16.

=

Watch Video Solution

lf

 $A = \{0,1\}B = \{1,2\}, c = \{2,3\}, \ \ ext{then}(A imes B) \cap (A imes C)$

A. $\{(0, 1), (1, 2)\}$

 $\mathsf{B}.\,\{(0,\,2),\,(1,\,3)\}$

C.
$$\{(1, 2), (1, 3)\}$$

D. $\{(0,2),(1,2)\}$

Answer: D

Watch Video Solution

17. If A be an empty set and B be a finite set having n elements then the total number of mappings from A to B

is

A. mn

B.n

C. 1

D. none of these

Answer: C

18. If
$$f(x) = \frac{x-1}{x+1}$$
, then f (2 x) is
A. $\frac{f(x)+1}{f(x)+3}$
B. $\frac{3f(x)+1}{f(x)+3}$
C. $\frac{f(x)+3}{f(x)+1}$
D. $\frac{f(x)+3}{3f(x)+1}$

Answer: B

19. The domain of definition of the function $f(x) = \log |x|$ is given by

A. x
eq 0B. x > 0C. x < 0D. $x \in R$

Answer: D

