

MATHS

BOOKS - OMEGA PUBLICATION

STRAIGHT LINES

1. The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find the vertices of triangle.

2. Find a point on the x-axis which is equidistant

from the points (7, 6) and (3, 4).

Watch Video Solution

3. Find the slope of a line, whch passes through the origin and the mid-point of the line segment joining the points P(0, -4) and B(8, 0).

4. Find the values of x for which the points (x, -1), (2,

1) and (4, 5) are collinear.

5. Find the angle between x-axis and the line joining the points (3,-1) and (4, -2).

Watch Video Solution

6. If three points A(h,0), B(a, b) and C(0, k) lie on line, show that $\frac{a}{h} + \frac{b}{k} = 1.$

7. Without using the pythagorus, show that the points (4, 4), (3, 5) and (-1, -1) are the vertices of a right angled triangle.

Watch Video Solution

8. The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the line.

9. Find the equation of the line which satisfying the

given conditions:

passing through the point (-4, 3) with slope $\frac{1}{2}$.

Watch Video Solution

10. Find the equation of the line which satisfying the given conditions:

passing through $\left(2, 2\sqrt{3}
ight)$ and inclined with the x-

axis at an angle of $75^{\,\circ}$.

11. Find the equation of the line which satisfying the given conditions: intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with

positive direction of the x-axis.

Watch Video Solution

12. Find the equation of the line which satisfy the

given conditions:

passing through the points (-1, 1) and (2, -4).

13. Find the equation of the line which satisfy the given conditions:

perpendicular distance from the origin is 5 units

and the angle made by the perpendicular with the

positive x-axis is 30° .

Watch Video Solution

14. Find the equation of the line passing through (-3, 5) and perpendicular to the line through the points (2, 5) and (-3, 6).

15. A line perpendicular to the line-segment joining the points (1, 0) and (2, 3) divides it the ratio 1 : n. Find the equation of the line.

Watch Video Solution

16. Find the equation of a line that cuts off equal intercepts on the co-ordinate axes and passes through (2, 3).

17. Find the equations of the lines passing through the point (2, 2) such that the sum of their intercepts on the axes is 9.

Watch Video Solution

18. Find the equation of the line through the point (0, 2) making an angle $\frac{2\pi}{3}$ with the positive x-axis. Also, find the equation of the line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

19. The perpendicular from the origin to a line meet

at the point (-2, 9), find the equation of the line.

20. Be using the concept of equation of a line prove

that the three points (3, 0), (-2, -2) and (8, 2) are

collinear.

21. Reduce the following equations into slopeintercept form and find their slopes and the yintercepts.

x + 7y = 0

22. Reduce the following equations into slopeintercept form and find their slopes and the yintercepts.

6x + 3y - 5 = 0

23. Reduce the following equations into intercept

form and find their intercepts on the axes.

3x + 2y - 12 = 0

Watch Video Solution

24. Reduce the following equations into intercept

form and find their intercepts on the axes.

4x - 3y = 6

25. Reduce the following equations into the normal form. Find their perpendicular distance from the origin and angle between perpendicular and positive direction of x-axis.

$$(i)x - \sqrt{3}y + 8 = 0$$
 $(ii)x - y = 4.$

Watch Video Solution

26. Find the point on the x-axis, whose distances x = u

from the line
$$rac{x}{3}+rac{y}{4}=1$$
 are 4 units.

(-2, 3).

29. Find the equation of the line perpendicular to the line x - 7y + 5 = 0 and having x-intercept 3.

31. Prove that the line through the point (x_1, y_1) and parallel to the line Ax + By + C = 0 is $A(x - x_1) + B(y - y_1) = 0.$

32. Find the equation of the right bisector of the

line segment joining the points (3, 4) and (-1, 2).

33. Find the coordinates of the foot of perpendicular from a point (-1, 3) to the line 3x - 4y - 16 = 0.

Watch Video Solution

34. If p and q are the lengths of perpendicular from

origin

 $x\cos heta-y\sin heta=k\cos2 heta\, ext{ and }\,x\sec heta+y\! ext{cosec} heta=k$

respectively. Prove that $p^2 + 4q^2 = k^2$.

Important Questions From Miscellaneous Exercise

1. Find the value of k for which the line

$$(k-3)x-ig(4-k^2ig)y+k^2-7k+6=0.$$

(a) parallel to x-axis (b) parallel to y-axis.

2. Find the equations of the lines which cut off intercepts on the axes whose sum and product are 1 and -6 respectively.

3. Find perpendicular distance of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$ from the origin.

4. Find the equation of a line drawn perependicular to the line $\frac{x}{4} + \frac{y}{6} = 1$, through the point where it meets the y-axis.

5. If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.

6. Find the equation of the line passing through the point of intersection of the lines 4x + 7y - 3 = 0, 2x - 3y + 1 = 0 that has equal

intercepts on the axes.

7. In what ratio, the line joining (-1, 1) and (5, 7) is

divided by the line x + y = 4?

8. Find the image of the point (3, 8) with respect to

the line x+3y=7, assuming line as a plane

mirror.

9. Find the equation of the line which is equidistant

from parallel lines 9x+6y-7=0 and

3x + 2y + 6 = 0.

Watch Video Solution

10. A ray of light passes through the point (1, 2) reflects on the x-axis at a point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.

Watch Video Solution

11. Find the equation of the line through the intersection

3x + 4y = 7 and x - y + 2 = 0 and whose slope

is 5.

12. Find the equation of the line through the intersection of 5x - 3y = 1 and 2x + 3y - 23 = 0 and perpendicular to the line 5x - 3y - 1 = 0.

Watch Video Solution

13. Find the new coordinates of the points in each of the following cases if the origin is shiftedto

point (-3, -2) by a translation of axes.

(i) (1, 1) (ii) (0, 1)

14. Find what the following equations become when the origin is shifted to the point (1, 1)

$$x^2 + xy - 3y^2 - y + 2 = 0$$

Watch Video Solution

15. Find what the following equations become when the origin is shifted to the point (1, 1)

$$xy - y^2 - x + y = 0$$

Watch Video Solution

16. Find what the following equations become when the origin is shifted to the point (1, 1)

$$xy - x - y + 1 = 0$$

Watch Video Solution

Multiple Choice Questions Mcqs

1. The point on the axis of y which its equidistant from (-1, 2) and (3, 4), is

A. (0, 4)

B. (0, 5)

C. (5, 0)

D. none of these

Answer: B

2. If P(1, 2), Q(4, 6), R(5, 7) and S(a, b) are the vertices

of a parallelogram PQRS, then

- B. a = 3, b = 4
- C. a = 2, b = 3

D.
$$a = 3, b = 5$$

Answer: C

3. The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1:1

A. lies in the Ist quadrant

B. lies in the lind quadrant

C. lies in the IIIrd quadrant

D. cannot be found.

Answer: D

4. If the vertices P, Q, R are rational points, which of the following points of the triangle PQR is (are) always rational point(s)?

A. centroid

B. incentre

C. circumcentre

D. orthocentre

Answer: A

5. The lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are perpendicular to each other if

A.
$$a_1b_2 - a_2b_1 = 0$$

B.
$$a_1a_2+b_1b_2=0$$

C.
$$a_1^2 b_2 + b_1^2 a_2 = 0$$

D.
$$a_1b_1+a_2b_2=0$$

Answer: B

6. The angle between the lines 2x - y + 3 = 0 and

x + 2y + 3 = 0 is

A. 90°

B. 60°

C. 45°

D. 30°

Answer: A

7. A triangle with vertices (4, 0), (-1, -1), (3,5) is

A. isosceles and right angled

B. isosceles but not right angled

C. right angled but not isosceles

D. neither right angled nor isosceles

Answer: A

8. Three vertices of a parallelogram taken in order are (-1, -6), (2, -5) and (7, 2). The fourth vertex is

A. (1, 4)

B. (1, 1)

C. (4, 4)

D. (4, 1)

Answer: D

9. The line passing through (0, 1) and perpendicular

to the line x-2y+11=0 is

A.
$$2x+y-2=0$$

$$\mathsf{B}.\,2x+y-1=0$$

C.
$$2x-y+3=0$$

D.
$$2x-y+1=0$$

Answer: B

10. The equation of line in the intercept form is

A.
$$rac{x}{a} - rac{y}{b} = ab$$

B. $rac{x}{a} + rac{y}{b} = 1$

$$B. \frac{a}{a} + \frac{b}{b} = 0$$

$$\mathsf{C}.\,ax+by=c$$

D. none of these

Answer: B

11. The equation of the straight line which passes through the point (1, -2) and cuts off equal intercepts from the axes will be

A.
$$x + y = 1$$

B.
$$x-y=1$$

C.
$$x + y + 1 = 0$$

D.
$$x-y-2=0$$

Answer: C

12. The equation of the straight line which passes through the point (1, 2) and cuts off equal intercepts from the axes will be

A.
$$x+y=1$$

B.
$$x - y = 1$$

C.
$$x+y-3=0$$

D.
$$x-y-2=0$$

Answer: C

13. The equation of the line that has x-intercept -3 and is perpendicular to the line 3x = 4 - 5y is :

- A. 3y = 5x 15
- B. 3y = 15 5x
- C. 3y = 5x + 15
- D. 3x = 15 + 5y

Answer: C

14. The equations ax + by + c = 0 and dx + ey + f = 0 represent the same straight line if

A.
$$\frac{a}{d} = \frac{b}{c}$$

B. c = f
C. $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$
D. $a = d, b = e, c = f$

Answer: C