đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - JBD PUBLICATION

CONIC SECTIONS

Exercise

1. Latus rectum of the parabola $x^{2}=4 a y$ is:
A. a
B. 4 a
C. 2 a
D. None of these

Answer:

- Watch Video Solution

$$
\begin{aligned}
& \text { 2. The centre of the circle } \\
& x^{2}+y^{2}+8 x+10 y-8=0 \text { is: }
\end{aligned}
$$

A. $(4,5)$
B. $(-4,-5)$
C. $(5,4)$
D. $(-5,-4)$

Answer:

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. The focus of the parabola } \\
& y^{2}-x-2 y+2=0 \text { is: }
\end{aligned}
$$

$$
\text { A. }\left(\frac{1}{4}, 0\right)
$$

B. $(1,2)$
C. $\left(\frac{5}{4}, 1\right)$
D. $\left(\frac{3}{4}, \frac{5}{2}\right)$

Answer:

- Watch Video Solution

4. The vertex of the parabola $y^{2}=4 a(x+a)$
is:
A. $(0,0)$
B. $(-a, 0)$
C. $(a, 0)$
D. $(0, a)$

Answer:

- Watch Video Solution

5. The equation of the parabola with the focus
$(3,0)$ and directrix $x+3=0$ is

$$
\text { A. } y^{2}=6 x
$$

B. $y^{2}=-3 x$
C. $y^{2}=12 x$
D. $y^{2}=2 x$

Answer:

D Watch Video Solution

6. The equation of the parabola with focus at
$(0,3)$ and the directrix $y+3=0$ is

$$
\text { A. } y^{2}=12 x
$$

$$
\begin{aligned}
& \text { B. } x^{2}=12 y \\
& \text { C. } x^{2}=-12 y \\
& \text { D. } y^{2}=-12 x
\end{aligned}
$$

Answer:

D Watch Video Solution
7. If the parabola $y^{2}=4 a x$ passes through (3,

2), then the length of its latus rectum is
A. 4
B. $\frac{1}{3}$
C. $\frac{4}{3}$
D. $\frac{2}{3}$

Answer:

- Watch Video Solution

8. The foci of the ellipse $9 x^{2}+4 y^{2}=36$ are
A. $(\pm 5,0)$
B. $(0,-5)$
C. $(-5,0)$
D. $(0, \pm 5)$

Answer:

- Watch Video Solution

9. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$
are
A. $(\pm 5,0)$
B. $(\pm 4,0)$
C. $(0, \pm 4)$
D. $(0, \pm 5)$

Answer:

D Watch Video Solution

10. The equation of the circle passing through
the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having center at $(0,3)$ is
A. 2
B. 4
C. 3
D. None of these

Answer:

- Watch Video Solution

11. In an ellipse, the distance between its foci is

6 and minor axis is 8 . Then, its eccentricity is
A. $\frac{3}{5}$
B. $\frac{5}{3}$
C. $\frac{4}{5}$
D. $\frac{5}{4}$

Answer:

D Watch Video Solution

12. The general equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a circle if
A. $a=b, h=0$
B. $a=b=0, h$ ne 0
C. $a \neq b, h=0$
D. None of these

Answer:

- Watch Video Solution

13. The centre of the circle $(x-1)^{2}+y^{2}=4$
is
A. $(-1,0)$
B. $(0,1)$
C. $(1,0)$
D. None of these

Answer:

- Watch Video Solution

14. The equation of circle having centre $(0,0)$ and area 154 sq. units.
A. $x^{2}+y^{2}=16$
B. $x^{2}+y^{2}=49$
C. $x^{2}+y^{2}=20$
D. None of these

Answer:

D Watch Video Solution

15. The eccentricity of the ellipse, if the minor axis is equal to the distance between the foci is:
A. $\frac{\sqrt{3}}{2}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{2}}$
D. None of these

Answer:

- Watch Video Solution

16. The eccentricity of the hyperbola whose
latus rectum is half of its transverse axis is:
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{2}{3}}$
D. None of these

Answer:

D Watch Video Solution

17. The length of the major axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is three times the length of
minor axis, it eccentricity is

> A. $\frac{1}{3}$
> B. $\frac{1}{\sqrt{3}}$
> C. $\frac{1}{\sqrt{2}}$
> D. $2 \frac{\sqrt{2}}{3}$

Answer:

D Watch Video Solution

18. If $(2,4)$ and $(10,10)$ are the ends of a latus rectum of an ellipse with the eccentricity $\frac{1}{2}$, then the length of semi-major axis is:
A. $\frac{20}{3}$
B. $\frac{15}{3}$
C. $\frac{40}{3}$
D. None of these

Answer:

D Watch Video Solution
19. If the circles $x^{2}+y^{2}=9$ and $x^{2}+y^{2}+8 y+c=0$ touch each other, then
c is equal to:
A. -15
B. 15
C. 16
D. None of these

Answer:

D Watch Video Solution
20. If the circle $x^{2}+y^{2}+2 a x+8 y+16=0$ touches x axis, then the vlaue of a is:
A. ± 1
B. ± 4
C. ± 8
D. None of these

Answer:

D Watch Video Solution
21. If $(x, 3)$ and $(3,5)$ are the extremities of a diameter of a circle with centre at $(2, y)$ then the values of x and y are:
A. $x=1, y=4$
B. $x=4, y=1$
C. $x=3, y=1$
D. None of these

Answer:

22. If $(-3,2)$ lies on the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0, \quad$ which is concentric
with
the
circle
$x^{2}+y^{2}+6 x+8 y-5=0$ then c is equal to:
A. 11
B. -11
C. 20
D. None of these

Answer:

23. The equation $\frac{x^{2}}{2-\lambda}+\frac{y^{2}}{\lambda-5}+1=0$ represents an ellipse if:
A. $\lambda>5$
B. $2<\lambda<5$
C. $\lambda>2$
D. None of these

Answer:
24.

The
equation
$16 x^{2}+y^{2}+8 x y-74 x-78 y+212=0$
represents:
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer:

D Watch Video Solution
25. The latus rectum of parabola $9 x^{2}-6 x+36 y+19=0$ is:
A. 2
B. 4
C. 6
D. None of these

Answer:

D Watch Video Solution
26. The latus rectum of the ellipse $16 x^{2}+y^{2}=16$ is:
A. $\frac{1}{2}$
B. $\frac{\sqrt{5}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. None of these

Answer:

D Watch Video Solution
27. The distance between the directrices of the
ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is:

$$
\begin{aligned}
& \text { A. } \frac{16}{\sqrt{3}} \\
& \text { B. } \frac{21}{\sqrt{5}} \\
& \text { C. } \frac{18}{\sqrt{5}}
\end{aligned}
$$

D. None of these

Answer:

28. The length of the latus rectum of hyperbla

$$
\begin{gathered}
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \text { is: } \\
\text { A. } \frac{4}{3} \\
\text { B. } \frac{3}{4} \\
\text { C. } \frac{32}{3}
\end{gathered}
$$

D. None of these

Answer:

D Watch Video Solution

29. The eccentricity of the conic

$$
9 x^{2}-16 y^{2}=144 \text { is: }
$$

A. $\frac{5}{4}$
B. $\frac{4}{3}$
C. $\frac{4}{5}$
D. None of these

Answer:

- Watch Video Solution

30. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$
are

> A. $(\pm 4,0)$
> B. $(0, \pm 4)$
> C. $(\pm 5,0)$
D. None of these

Answer:

- Watch Video Solution

1. In each of the following find the equation of
the circle with centre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$.

D Watch Video Solution

2. Find the equation of the circle with centre
$(2,2)$ and passes through the point $(4,5)$.

D Watch Video Solution

3. Find the equation of a circle whose centre is
$(3,-2)$ and has an area of 154 squares units.

D Watch Video Solution

4. Find the equation of a circle having centre
at point $C(-2,3)$ and touching the straigth line
$3 x-4 y-2=0$

D Watch Video Solution

5. In each of the following find the centre and
radius of the circles
$\left(x+\frac{3}{2}\right)^{2}+\left(Y-\frac{5}{2}\right)^{2}=\frac{289}{4}$.

- Watch Video Solution

6. In each of the following circles, find the centre and radius.
$x^{2}+y^{2}-8 x+10 y-12=0$

- Watch Video Solution

7. Does the point (-2.5, 3.5) lie inside, outside or

 on the circle $x^{2}+y^{2}=25$?
D Watch Video Solution

8. In each of the following find the coordinates
of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum .
$y^{2}=-8 x$
9. Find the equation of the parabola that satisfies given conditions:

Vertex (0, 0), focus (-2,0)

D Watch Video Solution

10. Find the coordinates of a point on the parabola $y^{2}=18 x$, where the ordinate is 3 times the abscissa.
11. Find the equation for ellipse that satisfies the given conditions

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

- Watch Video Solution

12. Find the eqation for the ellipse that satisfies the given conditions:

Length of major axis 26 , foci ($\pm 5,0$)
13. Find the equation for the elllipse that satisfy the given conditions:

Foci $(\pm 3,0), \mathrm{a}=4$.

- Watch Video Solution

14. Find the equations of the hyperbola satisfying the given conditions.

Vertices $(0, \pm 3)$ foci $(0, \pm 5)$
15. Find the equations of a circle having radius

5 units and the centre as the point of intersection of the straight lines $2 x-y-5=0$ and
$3 x+2 y=4$.

D Watch Video Solution

16. LL is the latus rectum of a parabola $x^{2}=-8 y$. Find the coordinates of points L and L'.
17. Find the area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.

- Watch Video Solution

18. Find the equation of a hyperbola whose
vertices lie on y-axis, centre is at the origin, the distance between the foci is 16 and eccentricity is $\sqrt{2}$.
19. Find the equation of the hyperbola satisfying the given conditions. Foci $(\pm 3 \sqrt{5}, 0)$ the latus rectum is of length 8.

D Watch Video Solution

20. In each of the following, find the equations
of the hyperbola satisfying the given conditions.
vertices are $(0, \pm 5), \mathrm{e}=\frac{5}{2}$.
21. The straight line $y=m x+1$ is a tangent to the parabola $y^{2}=4 x$, the find the value of m.

D Watch Video Solution

22. Find the length of the line segment joining
the vertex of the parabola $y^{2}=4 a x$ and a point on the parabola that makes angle θ with x-axis.
23. Find the equation of the ellipse with vertices at $(\pm 5,0)$, foci at $(\pm 4,0)$ and centre at $(0,0)$.

- Watch Video Solution

24. Find the equations of the ellipse whose
length of the major axis is 20 and foci are $(0, \pm 5)$.
25. Find the coordinates of the foci and the vertices, the eccentricity, the length of the latus rectum of the hyperbola: $y^{2}-16 x^{2}=16$.

D Watch Video Solution

26. Find the coordinates of foci, vertices, eccentricity, latus rectum and major and minor axis of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{25}=1$.
27. Verify that the locus of a point P which moves so that the sum of its distance from the points $S_{1}(-4,0)$ and $S_{2}(4,0)$ is 10 , is an ellipse.

D Watch Video Solution

28. Find the equation of an ellipse whose major axis is along the y-axis and which passes through the points $(2,2)$ and $(1,4)$.
29. Find the equation of the locus of all points
such that the difference of their distances from $(4,0)$ and $(-4,0)$ is always equal to 2.

- Watch Video Solution

30. Find the coordinates of the foci and the vertices, the ecentricity and the length of the latus rectum of the hyperbolas:
$5 y^{2}-9 x^{2}=36$

- Watch Video Solution

31. Find the length of latus rectum of the ellipse.
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

- Watch Video Solution

32. Find the eccentricity, the coordinates of the foci, the lengths of transverse and conjugate axes and the equations of
directrices of the hyperbola.
$\frac{y^{2}}{36}-\frac{x^{2}}{64}=1$.

D Watch Video Solution
33. Show that a conic whose foci are $(\pm 5,0)$ and one of the directrix has equations $x=\frac{36}{5}$ is an ellipse. Hence, find the equations.
34. Find the equation of the circle which passes through points $(2,-2)$ and $(3,4)$ and whose centre lies on the line $x+y=2$.

- Watch Video Solution

35. If S and S^{\prime} are the foci of $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$,
then show that $P S+P S^{\prime}=10$, where P is any point on the ellipse.
