

MATHS

BOOKS - JBD PUBLICATION

MODEL PAPER (12)

Exercise

1. $A \cap (A \cup B)$ ' is equal to:

A. A

B.B

 $\mathsf{C}.\phi$

D. $A\cap B$

Answer:

Watch Video Solution

2. If
$$f(x) = \frac{x-1}{x+1}$$
, then:

A.
$$f\left(\frac{1}{x}\right) = f(x)$$

$$\mathsf{B.}\, f\!\left(\frac{1}{x}\right) = \, -\, f(x)$$

$$\mathsf{C.}\,f\!\left(\frac{1}{x}\right) = f(x)$$

D.
$$f\left(rac{1}{x}
ight)=rac{1}{f(x)}$$

Answer:

3. The value of $\frac{\sin\pi}{14} \frac{\sin(3\pi)}{14} \frac{\sin(5\pi)}{14}$ is equal to:

A. 0

$$\frac{1}{2}$$

$$\mathsf{B.}\,\frac{1}{2}$$

$$\mathsf{C.}\,\frac{1}{4}$$

D.
$$\frac{1}{8}$$

Answer:

Watch Video Solution

4. If z is purely real number such that Re(z) < 0, then argument (z) is equal to:

A. π

$$B.-\frac{\tau}{2}$$

C. 0

D. none of these

Answer:

Watch Video Solution

5. The number of ways in which n distinct objects can be put into two different boxes is:

A. 2n

B. n^2

 $\mathsf{C.}\,2^n$

D. none of these

Answer:

Watch Video Solution

6. The G.M. between -2i and 8i is:

A.
$$\pm 2$$

$$\mathsf{B.}\pm 4$$

$$\mathsf{C}.\pm 4i$$

D. none of these

Answer:

7. A line passes through the point (2,2) and is perpendicular to the line 3x+y=3 , then its y - intercept is

A.
$$\frac{1}{3}$$
B. $\frac{2}{3}$

3.
$$\frac{2}{3}$$

D.
$$\frac{4}{3}$$

Answer:

Watch Video Solution

8. The eccentricity of the hyperbola whose latus rectum is half of its transverse axis is:

$$\frac{1}{\sqrt{2}}$$

B.
$$\sqrt{\frac{3}{2}}$$

C.
$$\sqrt{\frac{2}{3}}$$

D. none of these

Answer:

Watch Video Solution

- **9.** $\lim_{x\to 0} \frac{x}{\tan x}$ is equal to:
 - A. 0

B. 1

- C. 2
- D. none of these

Answer:

Watch Video Solution

10. If A and B are mutually exclusive events then:

A.
$$P(A) \leq Pig(\overline{B}ig)$$

$$\operatorname{B.}P(A) \geq P\big(\overline{B}\big)$$

$$\mathsf{C.}\,P(A) < P\big(\overline{B}\big)$$

D. none of these

Answer:

11. Prove that : $rac{ an\left(rac{\pi}{4}+x
ight)}{ an\left(rac{\pi}{4}-x
ight)}=\left(rac{1+ an x}{1- an x}
ight)^2.$

the

 $\cos\left(rac{3\pi}{2}+x
ight)\!\cos(2\pi+x)igg[\cot\left(rac{3\pi}{2}-x
ight)+\cot(2\pi+x)igg]=1$

13. Express: $(-i)(2i)\Big(-rac{1}{8}i\Big)^3$ in the form of a+ib.

following:

12.

Prove

14. Find the fourth term from the end in the expansion of

$$\left[\frac{x^3}{2} - \frac{2}{x^3}\right]^9.$$

Watch Video Solution

15. Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

Watch Video Solution

16. Find the lenghts of the medians of the triangle with vertices A(0,0,6), B(0,4,0) and C(6,0,0)

Watch Video Solution

17. Find out which of the following sentences are statements and which are not justify your answer

A triangle has four sides.

Watch Video Solution

18. Find out which of the following sentences are statements and which are not justify your answer

Do you work.

Watch Video Solution

19. Find the component statement of the following and check whether they are true or not.

A person who has taken mathematics or computer science can go for MCA.

Watch Video Solution

20. Let A={a,b,c} and B={1,2,3}. Find the number of relations from A into B.

21. Show tha:

$$\cos 6A = 32\cos^6 A - 48\cos^4 A + 18\cos^2 A - 1$$

Watch Video Solution

22.
$$1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

23. If $\hat{\ } nC_3=56$ and $\hat{\ } nP_3=336$, find n .

24. The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different

consonants can be formed from the alphabet?

25. The sum of two numbers is 6 times their G.M. show that numbers are in the ratio $3+2\sqrt{2}$: $3-2\sqrt{2}$.

26. Between 1 and 31, n A.M's have been inserted in sucha a way that the ratio of 7th and (m-1)th means is 5:9, find the value of m.

27. In which ratio is the line joining the points (1,3) and (2,7) is divided by the line 3x+y=9.

Watch Video Solution

28. Find the equation of hyperbola whose foic are $(0,\,\pm 12)$ and length of latus rectum is 36.

29. Evaluate: $\lim_{x\to 0} \frac{1-\cos 2x}{3\tan^2 x}$

30. Differentiate: $\frac{a\cos x + b\sin x + c}{\sin x}$ w.r.t.x.

Watch Video Solution

31. Three coins are tossed once. Find the probability of getting at least two heads.

Watch Video Solution

32. Three coins are tossed once. Find the probability of getting at most two tails.

33. If
$$(x+iy)^3=u+iv$$
, then show that

$$\frac{u}{x}+\frac{v}{y}=4\big(x^2-y^2\big)$$

34. Find the square root fo 1 - i.

35. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11.

36. Solve the given inequality $-5 < rac{x-2}{5} \le 0$

Watch Video Solution

37. Find $\displaystyle f(x) _{x o 0}$ where $\displaystyle f(x) = \left\{ egin{array}{ll} 2x+3 & x \leq 0 \ 3(x+1) & x > 0 \end{array}
ight.$

Watch Video Solution

38. Find the derivative of $(\sin x + \cos x)$ from the first principle.

