©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

RELATIONS AND FUNCTIONS

Example

1. Let A be the set of all students of a boys school. Show that the relation R in A given by $R=\{(a, b): a$ is sister of $b\}$ is the empty relation and $R^{\prime}=\{(a, b):$ the difference between heights of a and b is less than 3 meters $\}$ is the universal relation.
2. Let T be the set of all triangles in a plane with R a relation in T given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{2}\right\}$ Show that R is an equivalence relation.

- Watch Video Solution

3. Let L be the set of all lines in a plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is perpendicular to $\left.L_{2}\right\}$. Show that R is symmetric but neither reflexive nor transitive.

- Watch Video Solution

4. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\} \quad$ is reflexive but neither symmetric nor transitive.

- Watch Video Solution

5. Show that the relation R in the set Z of intergers given by
$R=\{(a, b): 2$ divides $\mathrm{a}-\mathrm{b}\}$
is an equivalence relation.

- Watch Video Solution

6. Let R be the realtion defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$: both a and b are either odd or even $\}$. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

- Watch Video Solution

7. Let A be the set of all 50 students of Class X in a school Let $f: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student x . Show that f in one-one but not onto.
8. Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.

- Watch Video Solution

9. Prove that the function $f: R \rightarrow R$, given by $f(x)=2 x$, is one-one and onto.

- Watch Video Solution

10. Show that the function $f: N \rightarrow N$, given by
$f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$, is onto but not one-one.

- Watch Video Solution

11. Show that the function $f: R \rightarrow R$.
defined as $f(x)=x^{2}$, is neither one-one nor onto.

- Watch Video Solution

12. Show that $f: N \rightarrow N$, given by
$f(x)=x+1$, if x is odd,
$f(x)=x-1$, if x is even
is both one-one and onto.

- Watch Video Solution

13. Show that an onto function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ is always one-one.

- Watch Video Solution

14. Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.
15. Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be function defined as
$f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$ and $g(5)=g(!$
Find $g(f(x))$

- Watch Video Solution

16. Find goo and fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that goo \neq fog.

- Watch Video Solution

17. Show that if $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\} \quad$ is defined by $f(x)=\frac{3 x+4}{5 x-7}$ and $g: R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\} \quad$ is defined by $g(x)=\frac{7 x+4}{5 x-3}, \quad$ then $\quad \mathrm{fog}=I_{A}$ and \quad gof $\quad=I_{B}, \quad$ where,
$A=R-\left\{\frac{3}{5}\right\}, B=R-\left\{\frac{7}{5}\right\}, I_{A}(x)=x, \forall x \in A, I_{B}(x)=x, \forall x \in 1$ are called identity functions on sets A and B, respectively.

- Watch Video Solution

18. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one, then gof $: A \rightarrow C$ is also one-one.

- Watch Video Solution

19. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then gof: $A \rightarrow C$ is also onto.

(D) Watch Video Solution

20. Consider functions f and g such that composite gof is defined and is one one Are f and g both necessarily one-one.
21. Are f and g both necessarily onto, if gof is onto?

- Watch Video Solution

22. Let $f:\{1,2,3\} \rightarrow\{a, b, c\}$ be one-one and onto function given by $f(1)=a, f(2)=b$ and $f(3)=c$. Show that there exists a function $g:\{a, b, c\} \rightarrow\{1,2,3\}$ such that gof $=I_{x}$ and fog $=I_{y}$, where, $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.

- Watch Video Solution

23. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where, $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible. Find the inverse.

- View Text Solution

24. Let $Y=\left\{n^{2}: n \in N\right\} \subset N$. Consider $f: N \rightarrow Y$ as $f(n)=n^{2}$. Show that f is invertible. Find the inverse of f.

- View Text Solution

25. Let $f: N \rightarrow R$ be a function defined as $f^{\prime}(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$. where, S is the range of f , is invertible. Find the inverse of f .

- View Text Solution

26. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(h)=3 y+4$ and $h(z=\sin z, \forall x, y$ and z in N . Show that $h(g o f)=(h o g)$ of.

- View Text Solution

27. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow$ \{apple, ball, cat $\}$ defined as $f(1)=a, f(2)=b, f(3)=c, g(a)=$ apple,$g(b)=$ ball and g (c)= cat. Show that f, g and gof are invertible. Find out f^{-1}, g^{-1} and (gof) ${ }^{-1}$ and show that (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

- View Text Solution

28. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary opertion on R. Further, show that division is binary opertion on the set R , of nonzero real numbers.

- View Text Solution

29. Show that subtraction and division are not binary opertions on N .

- View Text Solution

30. Show that $+: R \times R \rightarrow$ and $x: R \times R \rightarrow R$ are communtative binary opertions, but $-: R \times R \rightarrow R$ and $\div: R_{*} \times R_{*}$ are not commutative.

- View Text Solution

31. Show that addition and multiplication are associative binary opertion on R. But substraction is not associative on R. Division is not associative on R_{*}.

- View Text Solution

32. Show that $* R \times R \rightarrow R$ given by $a * b \rightarrow a+2 b$ is not associative.

- View Text Solution

33. Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the opertions $\div R \times R \rightarrow R$ and $\div: R_{*} \times R_{*} \rightarrow R_{*}$.

- View Text Solution

34. Show that -a is not the inverse of $a \in N$ for the addition opertion + on N and $\frac{1}{a}$ is not the inverse of $a \neq N$ for multiplication opertion \times on N , for $a \neq 1$.

- View Text Solution

35. If R_{1} and R_{2} are equivalence rrelations in a set A show that $R_{1} \cap R_{2}$ is also an equivalence relation.

- View Text Solution

36. Let $X=\{1,2,3,4,5,6,7,8,9\}$. Let R_{1} be a relation in X given by $R_{1}=\{(x, y):\{x, y\} \subset\{1,4,7\}\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\left\{3,6, \mathrm{c}^{2}\right.$ Show that $R_{1}=R_{2}$.

- View Text Solution

37. Find the number of all one-one functions from set $A=\{1,2,3\}$ to itself.

- View Text Solution

38. Show that number of equivalence relation in the set $\{1,2,2\}$ containing $(1,2)$ and $(2,1)$ is two.

- View Text Solution

39. Show that the number of binary opertions on $\{1,2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

- View Text Solution

40. Consider the identity function $I_{N}: N \rightarrow N$ defined as $I_{N}(x)=x \forall x \in N$. Show that although I_{N} is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as
$\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x) x+x=2 x$ is not onto.

- View Text Solution

41. Consider a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R \quad$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$, Show that f and g are one-one but $f+g$ is not one-one.

- View Text Solution

1. Determine w hether each of the following relations are reflexive, symmetric and transitive:
(i) Relation R in the set $A=\{1,2,3, \ldots, 13,14\}$ defined as
$R=\{(x, y): 3 x-y=0\}$
(ii) Relation R in the set N of natural numbers defined as
$R=\{(x, y): y=x+5$ and $x<4\}$
(iii) Relation R in the set $A=\{1,2,3,4,5,6\} a s$
$R=\{(x, y): y$ is divisible by x$\}$
(iv) Relation R in the set Z of allintegers defined as
$R=\{(x, y): x-y$ is an integer $\}$
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) $R=\{(x, y): x$ and y work at the same place $\}$
(b) $R=\{(x, y): x$ and y live in the same locality]
(c) $R=\{(x, y): x$ is exactly 7 cm taller than y$\}$
(d) $R=\{(x, y): x$ is wife of y$\}$
(e) $R=\{(x, y): x$ is father of y$\}$

- View Text Solution

2. Check whether the realtion R defined in the set $\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.

- View Text Solution

3. Check whether the relation R in R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- View Text Solution

4. Show that each of the relation R in set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by
(i) $R=\{(a, b):|a-b|$ is a multiple of 4$\}$
(ii) $R=\{(a, b): a=b\}$
is an equivalence relation. Find the set of all elements related to 1 in each case.

- View Text Solution

5. Show that the relation R defined in the set A of all triangles as $R=\left\{\begin{array}{ll}T_{1} & T_{2}\end{array}\right): T_{1}$ is similar to $\left.T_{2}\right\}$ is equivalence relation. Consider three right angle triangles T_{1} with sides $3,4,5, T_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangles among T_{1}, T_{2} and T_{3} are related ?

- View Text Solution

6. Show that the relation R defined in the set A of all polygons as $R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and P_{2} have same number of sides $\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

- View Text Solution

7. Let L be the set of all lines in $X Y$ plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- View Text Solution

8. Let R be the relation in the set $\{(1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1)(4,4),(1,3),(3,3),(3,2)\}$. Choose the correct answer.
A. R is reflexive symmetric but not transitive.
B. R is reflexive and transitive but not symmetric.
C. R is symmetric and transitive but not reflexive.
D. R is an equivalence relation.

Answer: B

9. Let R be the relation in the set N given by $R=\{(a, b), a=b-2, b>6\}$. Choose the correct answer.
A. $(2,4) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $((8,7) \in R$

Answer: B

- View Text Solution

Exercise 12

1. Show that the function $f: R_{*} \rightarrow R_{*}$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where R_{*} is the set of all non-zero numbes. Is the result true, if the domain R_{*} is replaced by N with co-domain being same as R_{*} ?
2. Check the injectivty and surjectiveity of the following functions:
(i) $f: N \rightarrow N$ given by $f(x)=x^{2}$
(ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$
(iii) $f: R \rightarrow R$ given by $f(x)=x^{2}$
(iv) $f: N \rightarrow N$ given by $f(x)=x^{3}$
(v) $f: Z \rightarrow Z$ given by $f(x)=x^{3}$

- View Text Solution

3. In each of the following cases, state whether the function is one-one onto or bijective. Justify your answwer.
(i) $f: R \rightarrow R$ defined by $f(x)=3-4 x$
(ii) $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$

- View Text Solution

4. Let $f: N \rightarrow N$ be defined by $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if } n \text { is odd } \\ \frac{n}{2} & \text { if } n \text { is even }\end{array}\right.$ for all $n \in N$.

State whether the function f is bijective. Justify your answer.

- View Text Solution

5. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

- View Text Solution

6. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer.
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto.

Answer: D

- View Text Solution

7. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Choose the correct answer.
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto.

Answer: A

- View Text Solution

1. Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.

- View Text Solution

2. Find gof and fog, if
(i) $f(x)=|x|$ and $g(x)=|5 x-2|$
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$.

- View Text Solution

3. State with reason wheher following functins have inverse
(i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with
$f=\{(1,10),(2,10),(3,10),(4,10)\}$
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with
$g=\{(5,4),(6,3),(7,4),(8,2)\}$
(iii) $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with
$h=\{(2,7),(3,9),(4,11),(5,13)\}$

- View Text Solution

4. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f:[-1,1] \rightarrow$ Rangle f .

- View Text Solution

5. Consider $f: R \rightarrow R$ given by $f(x)=4 x=4 x+3$. Show that f is invertible. Find the inverse of f.

- View Text Solution

6. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\} \quad$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.
7. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$, then fof (x) is
A. $x^{\frac{1}{3}}$
B. x^{3}
C. x
D. $\left(3-x^{3}\right)$.

Answer: C

- View Text Solution

8. Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$. The inverse of f is the map g: Range $f \rightarrow R\left\{-\frac{4}{3}\right\}$ given by
A. $g(y)=\frac{3 y}{3-4 y}$
B. $g(y)=\frac{4 y}{4-3 y}$
C. $g(y)=\frac{4 y}{3-4 y}$
D. $g(g)=\frac{3 y}{4-3 y}$

Answer: B

- View Text Solution

Exercise 14

1. Determine whether or not each of the defination of $*$ given below gives a binary opertion. In the even that $*$ is not a binary opertion, give justification for this.
(i) On Z^{+}, define $*$ by $a * b=a-b$
(ii) On Z^{+}, define $*$ by $a * b b=a b$
(iii) On R, define $*$ by $a * b=a b^{2}$
(iv) On Z^{+}, define $*$ by $a * b=|a-b|$
(v) On Z^{+}, define $*$ by $a * b=a$
2. For each opertion * difined below, determine whether * isw binary, commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q, define $a * b=\frac{a b}{2}$
(iv) On Z^{+}, define $a * b=2^{a b}$
(v) On Z^{+}, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$

D View Text Solution

3. Consider the binary opertion \wedge on the set $\{1,2,3,4,5\}$ defined by $a \wedge b=\min \{a, b\}$. Write the opertion table of the opertion \wedge.

- View Text Solution

4. Let *' be the binary opertion on the set $\{1,2,3,4,5\}$ defined by $a \& \&{ }^{\prime} \mathrm{b}=$ H.C.F. of a and b . Is the opertion $*^{\prime}$ same as the opertion * defined in above? Your answer

- View Text Solution

5. Let * be the binary opertion on N given by $a * b=L . C . M$. of a and
b. Find
(i) $5 * 7,20 * 16$
(ii) Is $*$ commutative ?
(iii) Is * associative ?
(iv) Find the identity of $*$?
(v) Which elements of N are invertible for the opertion * ?

- View Text Solution

6. Is $*$ defined on the set $\{1,2,3,4,5\} b y a * b=L$. C. M. of a and b a binary opertion ? Justified your answer.
7. Let * be the binary opertion on N defined by $a * b=H$. C. F. of a and b. Is * commutative ? Is * associative ? Does there exist identity for this binary opertion on N ?

- View Text Solution

8. Let * be a binary opertion on the set Q of rational numbers as follows:
(i) $a \star b=a-b$
(ii) $a * b=a^{2}+b^{2}$
(iii) $a * b=a+a b$
(iv) $a * b=(a-b)^{2}$
(v) $a * b=\frac{a b}{4}$
(vi) $a * b=a b^{2}$

Find which of the binary opertions are commutative and which are associative.
9. Find which of the opertions given above has identity.

- View Text Solution

10. Let $A=N \times N$ and $*$ be the binary opertion on A defined by
$(a, b) *(c, d)=(a+c, b+d)$
Show that $*$ is commutative and associative. Find the identity element for $*$ on A , if any.

- View Text Solution

11. State whether the following statements are true or false, Justify.
(i) For an arbitraty binary opertion $*$ on a set $N, a * a=a \forall a \in N$.
(ii) If $*$ is a commutative binary opertion on N , then $a *(b * c)=(c * b) \cdot 8 a$
12. Consider a binary opertion $*$ on N defined as $a * b=a^{3}+b^{3}$. Choose the correct answer.
A. Is $*$ both associative and commutative?
B. Is $*$ commutative but not associative ?
C. Is $*$ associative but not commutative ?
D. Is * neither comutative nor associative ?

Answer: B

- View Text Solution

Misclellaneous Exercise On Chapter 1

1. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g \circ f=f 0 g=1_{R}$.
2. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$, if n is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f . Here, W is the set of all whole numbers.

- View Text Solution

3. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

- View Text Solution

4. Given a non empty set X, consider $P(X)$ which is the set of all subsets of X.

Define the relation R in $\mathrm{P}(\mathrm{X})$ as follows :
For subsets A, B in $\mathrm{P}(\mathrm{X})$, ARB if and only if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify your answer.
5. Find the number of all onto functins from the set $\{1,2,3 \ldots, n\}$ to itself.

D View Text Solution

6. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find F^{-1} of the following F from S to T, if exists.
(i) $F=\{(a, 3),(b, 2),(c, 1)\}$
(ii) $F=\{(a, 2),(b, 1),(c, 1)\}$

- View Text Solution

7. Consider the binary opertions $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as $a * b=|a-b|$ and $a o b=a, \forall a, b \in R$. Show that $*$ is commutative but not associative, o is associative but not commutative.

Further, show that $\forall a, b, c \in R, a *(b o c)=(a * b) o(a * c)$. [If it is so, we say that the opertion * distributes over the opertion 0]. Does o distribute over * ? Justify your answer.

- View Text Solution

8. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g, A \rightarrow B$ be functions defined by
$f(x)=x^{2}-x, x \in A$ and $g(x)=2\left|x-\frac{1}{2}\right|-1, x \in A$ Are f and g equal ? Justify your answer.

- View Text Solution

9. Let $A=\{1,2,3\}$. Then number of relations containing
$(1,2)$ and $(1,3)$ which are reflexive ans symmetric but not transitive is
A. 1
B. 2
C. 3
D. 4

- View Text Solution

10. Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- View Text Solution

11. Let $f: R \rightarrow R$ be the Signumb Function defined as
$f(x)= \begin{cases}1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{cases}$
and $g: R o \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$,
where $[x]$ is greatest integer less than or equal to x . Then does fog and gof coincide in (0,1]?

- View Text Solution

12. Number of binary opertions on the set $\{a, b\}$ are
A. 10
B. 16
C. 20
D. 8

Answer: B

