

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

RELATIONS AND FUNCTIONS

Example

1. Let A be the set of all students of a boys school. Show that the relation R in A given by $R = \{(a, b) : a \text{ is sister of b}\}$ is the empty relation and $R' = \{(a, b) : \text{ the difference between heights of a and b is less than 3}$ meters $\}$ is the universal relation.

2. Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2): T_1 \text{ is congruent to } T_2\}$ Show that R is an equivalence relation.

3. Let L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2 \}$. Show that R is symmetric but neither reflexive nor transitive.

4. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.

5. Show that the relation R in the set Z of intergers given by

 $R = \{(a,b) : 2 ext{ divides a-b } \}$

is an equivalence relation.

6. Let R be the realtion defined in the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ by $R = \{(a, b):$ both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1, 3, 5, 7\}$ are related to each other and all the elements of the subset $\{2, 4, 6\}$ are related to each other, but no element of the subset $\{1, 3, 5, 7\}$ is related to any element of the subset $\{2, 4, 6\}$.

Watch Video Solution

7. Let A be the set of all 50 students of Class X in a school Let f:A o Nbe function defined by f(x)= roll number of the student x. Show that f in one-one but not onto.

8. Show that the function $f: N \to N$, given by f(x) = 2x, is one-one

but not onto.

Watch Video Solution

9. Prove that the function $f\colon R o R,\,$ given by $f(x)=2x,\,$ is one-one

and onto.

Watch Video Solution

10. Show that the function
$$f:N o N,$$
 given by $f(1)=f(2)=1$ and $f(x)=x-1,$ for every $x>2,$ is onto but not one-one.

une.

11. Show that the function $f \colon R \to R$.

defined as $f(x) = x^2$, is neither one-one nor onto.

Watch Video Solution

12. Show that $f \colon N o N$, given by

f(x) = x + 1, if x is odd,

f(x) = x - 1, if x is even

is both one-one and onto.

Watch Video Solution

13. Show that an onto function $f \colon \{1,2,3\} \to \{1,2,3\}$ is always one-one.

Watch Video Solution

14. Show that a one-one function $f \colon \{1,2,3\} o \{1,2,3\}$ must be onto.

15. Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be function defined as f(2) = 3, f(3) = 4, f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5) = g(9)Find g (f (x))

Watch Video Solution

16. Find gof and fog, if f:R o R and g:R o R are given by $f(x)=\cos x$ and $g(x)=3x^2.$ Show that gof eq fog.

17. Show that if
$$f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$$
 is defined by $f(x) = \frac{3x+4}{5x-7}$ and $g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$ is defined by $g(x) = \frac{7x+4}{5x-3}$, then fog = I_A and gof = I_B , where,

$$A=R-igg\{rac{3}{5}igg\},B=R-igg\{rac{7}{5}igg\},I_A(x)=x,\,orall x\in A,I_B(x)=x,\,orall x\in B$$

are called identity functions on sets A and B, respectively.

Natch Video Solution

18. Show that if $f: A \to B$ and $g: B \to C$ are one-one, then gof

:A
ightarrow C is also one-one.

Watch Video Solution

19. Show that if f:A
ightarrow B and g:B
ightarrow C are onto, then $ext{gof:} A
ightarrow C$ is

also onto.

20. Consider functions f and g such that composite gof is defined and is

one one Are f and g both necessarily one-one.

21. Are f and g both necessarily onto, if gof is onto?

22. Let $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ be one-one and onto function given by f(1) = a, f(2) = b and f(3) = c. Show that there exists a function $g: \{a, b, c\} \rightarrow \{1, 2, 3\}$ such that gof $= I_x$ and fog $= I_y$, where, $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$.

Watch Video Solution

23. Let f:N o Y be a function defined as f(x)=4x+3, where, $Y=\{y\in N: y=4x+3 ext{ for some } x\in N\}$. Show that f is invertible. Find the inverse.

24. Let
$$Y = ig\{n^2 \colon n \in Nig\} \subset N.$$
 Consider $f \colon N o Y$ as $f(n) = n^2.$

Show that f is invertible. Find the inverse of f.

25. Let $f: N \to R$ be a function defined as $f'(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$. where, S is the range of f, is invertible. Find the inverse of f.

View Text Solution

26. Consider $f: N \to N, g: N \to N$ and $h: N \to R$ defined as f(x) = 2x, g(h) = 3y + 4 and $h(z = \sin z, \forall x, y \text{ and } z \text{in } N$. Show that h(gof) = (hog) of.

27. Consider $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ and $g: \{a, b, c\} \rightarrow \{\text{apple, ball, cat}\}$ defined as f(1) = a, f(2) = b, f(3) = c, g(a) = apple,g(b) = ball and g(c) = cat. Show that f, g and gof are invertible. Find out f^{-1}, g^{-1} and $(\text{gof})^{-1}$ and show that $(\text{gof})^{-1} = f^{-1}og^{-1}$.

View Text Solution

28. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary opertion on R. Further, show that division is binary opertion on the set R, of nonzero real numbers.

View Text Solution

29. Show that subtraction and division are not binary opertions on N.

30. Show that $+: R \times R \to \text{ and } x: R \times R \to R$ are commutative binary opertions , but $-: R \times R \to R$ and $\div: R_* \times R_*$ are not commutative.

View Text Solution

31. Show that addition and multiplication are associative binary opertion on R. But substraction is not associative on R. Division is not associative on R_* .

View Text Solution

32. Show that *R imes R o R given by a * b o a + 2b is not associative.

33. Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the opertions $\therefore R \times R \rightarrow R$ and $\therefore : R_* \times R_* \rightarrow R_*$.

34. Show that -a is not the inverse of $a \in N$ for the addition opertion + on N and $\frac{1}{a}$ is not the inverse of $a \neq N$ for multiplication opertion \times on N , for $a \neq 1$.

View Text Solution

35. If $R_1 \, ext{ and } \, R_2$ are equivalence rrelations in a set A show that $R_1 \cap R_2$

is also an equivalence relation.

36. Let $X=\{1,2,3,4,5,6,7,8,9\}$. Let R_1 be a relation in X given by $R_1=\{(x,y)\colon \{x,y\}\subset\{1,4,7\}\}$ or $\{x,y\}\subset\{2,5,8\}$ or $\{x,y\}\subset\{3,6,9\}$ Show that $R_1=R_2$.

37. Find the number of all one-one functions from set $A = \{1, 2, 3\}$ to itself.

View Text Solution

38. Show that number of equivalence relation in the set $\{1, 2, 2\}$ containing (1, 2) and (2, 1) is two.

39. Show that the number of binary opertions on $\{1, 2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

40. Consider the identity function $I_N\colon N o N$ defined as $I_N(x)=x\,orall\,x\in N.$ Show that although I_N is onto but $I_N+I_N\colon N o N$ defined as

$$(I_N+I_N)(x)=I_N(x)+I_N(x)x+x=2x$$
 is not onto.

View Text Solution

41. Consider a function $f: \left[0, \frac{\pi}{2}\right] \to R$ given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \to R$ given by $g(x) = \cos x$, Show that f and g are one-one but f + g is not one-one.

1. Determine w hether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set $A=\{1,2,3,\ldots,13,14\}$ defined as

$$R = \{(x,y)\!:\! 3x-y=0\}$$

(ii) Relation R in the set N of natural numbers defined as

 $R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$

(iii) Relation R in the set $A=\{1,2,3,4,5,6\}as$

 $R = \{(x, y) : y ext{ is divisible by x}\}$

(iv) Relation R in the set Z of allintegers defined as

 $R = \{(x, y) : x - y \text{ is an integer}\}$

(v) Relation R in the set A of human beings in a town at a particular time given by

(a)
$$R = \{(x, y) : x \text{ and } y \text{ work at the same place} \}$$

- (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$
- (c) $R = \{(x, y) : x ext{ is exactly 7 cm taller than y}\}$

(d)
$$R = \{(x,y) : x ext{ is wife of y}\}$$

(e) $R = \{(x,y) : x ext{ is father of y}\}$

2. Check whether the realtion R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as

 $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive.

View Text Solution

3. Check whether the relation R in R defined by $R = ig\{(a,b) : a \leq b^3ig\}$ is

reflexive, symmetric or transitive.

View Text Solution

4. Show that each of the relation R in set $A = \{x \in Z : 0 \le x \le 12\},$

given by

(i) $R = \{(a, b) : |a - b| \text{ is a multiple of 4}\}$

(ii) $R = \{(a, b) : a = b\}$

is an equivalence relation. Find the set of all elements related to 1 in each

case.

5. Show that the relation R defined in the set A of all triangles as $R = \{T_1 \ T_2\}: T_1$ is similar to $T_2\}$ is equivalence relation. Consider three right angle triangles T_1 with sides $3, 4, 5, T_2$ with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1, T_2 and T_3 are related ?

View Text Solution

6. Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5?

7. Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

8. Let R be the relation in the set $\{(1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1)(4, 4), (1, 3), (3, 3), (3, 2)\}$. Choose the correct answer.

A. R is reflexive symmetric but not transitive.

B. R is reflexive and transitive but not symmetric.

C. R is symmetric and transitive but not reflexive.

D. R is an equivalence relation.

Answer: B

relation the the given 9. Let R be in set Ν by $R = \{(a,b), a = b-2, b > 6\}.$ Choose the correct answer. A. $(2, 4) \in R$ $\mathsf{B.}\,(3,8)\in R$ $\mathsf{C.}\,(6,8)\in R$ D. $((8, 7) \in R$

Answer: B

View Text Solution

Exercise 12

1. Show that the function $f: R_* \to R_*$ defined by $f(x) = \frac{1}{x}$ is one-one and onto, where R_* is the set of all non-zero numbes. Is the result true, if the domain R_* is replaced by N with co-domain being same as R_* ? 2. Check the injectivty and surjectiveity of the following functions :

- (i) $f\!:\!N o N$ given by $f(x)=x^2$
- (ii) $f\!:\!Z o Z$ given by $f(x)=x^2$
- (iii) $f{:}R o R$ given by $f(x) = x^2$
- (iv) $f\!:\!N o N$ given by $f(x)=x^3$
- (v) $f\!:\!Z o Z$ given by $f(x)=x^3$

View Text Solution

3. In each of the following cases, state whether the function is one-one onto or bijective. Justify your answwer.

(i) $f \colon R o R$ defined by f(x) = 3 - 4x

(ii) $f\!:\!R o R$ defined by $f(x)=1+x^2$

4. Let $f: N \to N$ be defined by $f(n) = \begin{cases} rac{n+1}{2} & ext{if } n ext{ is odd} \\ rac{n}{2} & ext{if } n ext{ is even} \end{cases}$ for all $n \in N$.

State whether the function f is bijective. Justify your answer.

5. Let
$$A = R - \{3\}$$
 and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is fone-one and onto ? Justify

your answer.

View Text Solution

6. Let $f\colon R o R$ be defined as $f(x)=x^4.$ Choose the correct answer.

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto.

Answer: D

- 7. Let $f \colon R o R$ be defined as f(x) = 3x. Choose the correct answer.
 - A. f is one-one onto
 - B. f is many-one onto
 - C. f is one-one but not onto
 - D. f is neither one-one nor onto.

Answer: A

1. Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1) \text{ and } g = \{(1, 3), (2, 3), (5, 1)\}.$ Write down gof.

View Text Solution

2. Find gof and fog, if

(i)
$$f(x) = |x|$$
 and $g(x) = |5x - 2|$

(ii)
$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$.

View Text Solution

3. State with reason wheher following functins have inverse

(i)
$$f: \{1, 2, 3, 4\} \rightarrow \{10\}$$
 with
 $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$
(ii) $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ with
 $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$

(iii)
$$h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 with
 $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$
View Text Solution
4. Show that $f: [-1, 1] \rightarrow R$, given by $f(x) = \frac{x}{(x+2)}$ is one-one. Find
the inverse of the function $f: [-1, 1] \rightarrow R$ angle f.

5. Consider $f: R \to R$ given by f(x) = 4x = 4x + 3. Show that f is invertible. Find the inverse of f.

View Text Solution

6. Consider $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$.

7. If
$$f\!:\!R o R$$
 be given by $f(x)=ig(3-x^3ig)^{rac{1}{3}},\,$ then fof (x) is

A. $x^{rac{1}{3}}$ B. x^{3} C. xD. $(3 - x^{3})$.

Answer: C

8. Let
$$f: R - \left\{-\frac{4}{3}\right\} \to R$$
 be a function defined as $f(x) = \frac{4x}{3x+4}$.
The inverse of f is the map g: Range $f \to R\left\{-\frac{4}{3}\right\}$ given by

A.
$$g(y)=rac{3y}{3-4y}$$
B. $g(y)=rac{4y}{4-3y}$

$$ext{C. } g(y) = rac{4y}{3-4y}$$
 $ext{D. } g(g) = rac{3y}{4-3y}$

Answer: B

View Text Solution

Exercise 14

1. Determine whether or not each of the defination of * given below gives a binary opertion. In the even that * is not a binary opertion, give justification for this.

(i) On Z^+ , define * by a * b = a - b(ii) On Z^+ , define * by a * b = ab(iii) On R, define * by $a * b = ab^2$ (iv) On Z^+ , define * by a * b = |a - b|(v) On Z^+ , define * by a * b = a **2.** For each opertion * difined below, determine whether * isw binary, commutative or associative.

(i) On Z, define a * b = a - b(ii) On Q, define a * b = ab + 1(iii) On Q, define $a * b = \frac{ab}{2}$ (iv) On Z^+ , define $a * b = 2^{ab}$ (v) On Z^+ , define $a * b = a^b$ (vi) On $R - \{-1\}$, define $a * b = \frac{a}{b+1}$

View Text Solution

3. Consider the binary opertion $\ \land \$ on the set $\{1,2,3,4,5\}$ defined by

 $a \wedge b = \min \{a, b\}$. Write the opertion table of the opertion \wedge .

4. Let * ' be the binary opertion on the set $\{1, 2, 3, 4, 5\}$ defined by a&&' b = H.C.F. of a and b. Is the opertion * ' same as the opertion * defined in above ? Your answer

```
View Text Solution
```

5. Let * be the binary opertion on N given by a * b = L. C. M. of a and

b. Find

- (i) 5 * 7, 20 * 16
- (ii) Is * commutative?
- (iii) Is * associative?
- (iv) Find the identity of * ?
- (v) Which elements of N are invertible for the opertion *?

6. Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b = L. C. M. of a and b a

binary opertion ? Justified your answer.

View Text Solution

8. Let * be a binary opertion on the set Q of rational numbers as follows: (i) $a \star b = a - b$ (ii) $a \star b = a - b$ (iii) $a \star b = a^2 + b^2$ (iii) $a \star b = a + ab$ (iv) $a \star b = (a - b)^2$ (v) $a \star b = \frac{ab}{4}$ (vi) $a \star b = ab^2$

Find which of the binary opertions are commutative and which are associative.

9. Find which of the opertions given above has identity.

10. Let A = N imes N and $\, * \,$ be the binary opertion on A defined by

$$(a,b)st(c,d)=(a+c,b+d)$$

Show that * is commutative and associative. Find the identity element for * on A, if any.

11. State whether the following statements are true or false, Justify.

(i) For an arbitraty binary opertion * on a set $N, a * a = a \, \forall a \in N$.

(ii) If * is a commutative binary opertion on N, then $a*(b*c)=(c*b)\cdot 8a$

12. Consider a binary opertion * on N defined as $a * b = a^3 + b^3$. Choose the correct answer.

A. Is * both associative and commutative ?

B. Is * commutative but not associative ?

C. Is * associative but not commutative ?

D. Is * neither comutative nor associative ?

Answer: B

View Text Solution

Misclellaneous Exercise On Chapter 1

1. Let f: R o R be defined as f(x) = 10x + 7. Find the function

 $g \colon R o R$ such that $gof = f0g = 1_R.$

2. Let $f: W \to W$ be defined as f(n) = n - 1, if n is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

3. If $f\!:\!R o R$ is defined by $f(x)=x^2-3x+2, ext{ find } f(f(x)).$

View Text Solution

4. Given a non empty set X, consider P (X) which is the set of all subsets of

Х.

Define the relation R in P(X) as follows :

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify your answer.

5. Find the number of all onto functins from the set $\{1, 2, 3..., n\}$ to itself.

6. Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following F from S to T, if exists. (i) $F = \{(a, 3), (b, 2), (c, 1)\}$ (ii) $F = \{(a, 2), (b, 1), (c, 1)\}$

View Text Solution

7. Consider the binary opertions $*: R \times R \to R$ and $o: R \times R \to R$ defined as a * b = |a - b| and $aob = a, \forall a, b \in R$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b, c \in R, a * (boc) = (a * b)o(a * c)$. [If it is so, we say that the operation * distributes over the operation 0]. Does o distribute over * ? Justify your answer. 8. Let $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ and $f, g, A \to B$ be functions defined by $f(x) = x^2 - x, x \in A$ and $g(x) = 2\left|x - \frac{1}{2}\right| - 1, x \in A$ Are f and g equal ? Justify your answer.

View Text Solution

9. Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive ans symmetric but not transitive is

A. 1

B. 2

C. 3

D. 4

Answer: A

10. Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is

A. 1

B. 2

C. 3

D. 4

Answer: B

View Text Solution

11. Let $f \colon R o R$ be the Signumb Function defined as

$$f(x) = egin{cases} 1, & x > 0 \ 0, & x = 0 \ -1, & x < 0 \end{cases}$$

and $g\!:\!Ro o R$ be the Greatest Integer Function given by g(x)=[x],

where $\left[x ight]$ is greatest integer less than or equal to x. Then does fog and
gof coincide in $(0, 1]$?
View Text Solution
12. Number of binary opertions on the set $\{a, b\}$ are
A. 10
B. 16
C. 20
D. 8
Answer: B
View Text Solution