

MATHS

BOOKS - JBD PUBLICATION

PRINCIPLE OF MATHEMATICAL INDUCTION

Example

1. ਸਾਰੇ $n\geq 1$ ਲਈ, ਸਿੱਧ ਕਰੋ ਕਿ

$$1^2$$
 _

$$1^2+2^2+3^2+4^2+\ldots\,+n^2=rac{n(n+1)(2n+1)}{6}$$

Watch Video Solution

2. Use principle of mathematical induction to prove

that:
$$1+2+3+\ldots\ldots+n=rac{n(n+1)}{2}$$

Watch Video Solution

3. Using principle of mathematical induction show that

$$(2n+7)<(n+3)^2 f ext{ or } all n\in N$$

Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N$:-

$$1+2+3+...+n<rac{1}{8}(2n+1)^2.$$

5. Using mathematical induction , show that n(n+1)(n+5) is a multiple of 3.

6. Prove by the principle of mathematical induction $10^{2n-1}+1$ is divisible by 11.

7. Prove, by Principle of Mathematical Induction, that the sum of the cubes of

three consecutive natural numbers is divisible by 9.

Watch Video Solution

8. Show by mathematical induction that $a^{2n}-b^{2n}$ is divisible by a+b.

Watch Video Solution

9. Prove by mathematical induction that

$$1+3+3^2+\ldots\ldots+3^{n-1}=rac{3^n-1}{2}$$

10. Prove by mathematical induction that

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

Watch Video Solution

the following for all $n \in N$:

11. By the Principle of Mathematical Induction, prove

$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right).....\left(1+\frac{1}{n}\right)=(n+1)$$

Watch Video Solution