©゙"doubtnut

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

VECTOR ALGEBRA

Example

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south.

- Watch Video Solution

2. Classify the following measures as scalars and vectors.
(i) 5 seconds (ii) $1000 \mathrm{~cm}^{3}$ (iii) 10 Newton
(iv) $30 \frac{\mathrm{~km}}{\mathrm{hr}}$ (v) $10 \mathrm{~g} / \mathrm{cm}^{2}$ (vi) $20 \mathrm{~m} / \mathrm{s}$ towards North

D Watch Video Solution

3. In the figure, which of the vectors are
(i) Collinear vectors
(ii) Equal vectors
(iii) Cointial vectors

- Watch Video Solution

4. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.
5. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

D Watch Video Solution

6. Find unit vector in the direction of vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$

D Watch Video Solution

7. Find a vector in the direction of $\vec{a}=\hat{i}-2 \hat{j}$ that has a magnitude 7 units.

- Watch Video Solution

8. Find the unit vector in the direction of the sum of vectors,

$$
\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k} \text { and } \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}
$$

- Watch Video Solution

9. Write the direction ratio's of the vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

10. Find the vector joining the points $P(2,3,0)$ and $Q(-1,-2,-4)$ directed from P to Q

- Watch Video Solution

11. Consider two points P and Q with position vectors $\overrightarrow{O P}=$ $3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio $2: 1$
(i) internally (ii) externally.

- Watch Video Solution

12. Show that the points whose positions vectors
$4 \hat{i}-3 \hat{j}+\hat{k}, 2 \hat{i}-4 \hat{j}+5 \hat{k}, \hat{i}-\hat{j}$ from a right angled triangle.

- Watch Video Solution

13. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.

(D) Watch Video Solution

14. Find angle θ between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}=\hat{j}+\hat{k}$.

D Watch Video Solution

15. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-b e c b$ are perpendicular.

D Watch Video Solution

16. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 k$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.
17. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.

D Watch Video Solution

18. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$.

- Watch Video Solution

19. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ (Cauchy-Schwartz inequality).

- Watch Video Solution

20. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ (triangle inequality).

D Watch Video Solution

21.

Show
that
the
points
$A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$ are collinear.

- Watch Video Solution

22. Find the magnitude of $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.
23. Find the unit vectors perpendicular to each of the vectors
$\vec{a}+\vec{b} \quad$ and $\quad \vec{a}-\vec{b}$,where $\quad \vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

D Watch Video Solution

24. Find the area of atriangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as its vertices.

- Watch Video Solution

25. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

26. Write all the unit vectors in XY - plane.

D Watch Video Solution

27. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are position vectors of points A, B, C and D respectively, then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$. Deduce that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear.

- Watch Video Solution

28. Let \vec{a}, \vec{b} and \vec{c} be the three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$, and each one of them being perpendicular to the sum of the other two. Find $|\vec{a}+\vec{b}+\vec{c}|$.
29. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \quad$ Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$,
$|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=2$.

D Watch Video Solution

30. If $\vec{\alpha}=3 \hat{i}-\hat{j}$ and $\vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express, $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

- Watch Video Solution

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

D Watch Video Solution

2. Classify the following measures as scalars and vectors .
(i) 10 kg
(ii) 2 meters north
(iii) 40°
(iv) 40 watt
(v) 10^{19} coulomb
(vi) $20 \mathrm{~m} / \mathrm{s}^{2}$
3. Classify the following as scalar and vector quantities.
(i) Time period (ii) Distance
(iii) Force (iv) Velocity
(v) Work done

- Watch Video Solution

4. Answer the followings true or false.
(i) \vec{a} and $-\vec{a}$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

1. Compute the magnitude of the following vectors:
$\vec{a}=\hat{i}+\hat{j}+k, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}, \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

D Watch Video Solution

2. Write two different vectors having same magnitude.

- Watch Video Solution

3. Write two different vectors having the same direction.

- Watch Video Solution

4. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

Watch Video Solution

5. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(-5,7)$

- Watch Video Solution

> 6. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}--7 \hat{k}$

- Watch Video Solution

7. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.
8. Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$ respectively.

- Watch Video Solution

9. For given vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

D Watch Video Solution

10. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.
11. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ are $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

12. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

D Watch Video Solution

13. Find the direction cosines of the vector joining the points A
$(1,2,-3)$ and $B(-1,-2,1)$ directed from A to B.

D Watch Video Solution

14. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined with the coordinate axes.

- Watch Video Solution

15. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$
(i) internally (ii) externally

- Watch Video Solution

16. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.
17. Show that the points A, B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}=5 \hat{k}$,respectively form the vertices of a right angled triangle.

- Watch Video Solution

18. In triangle $A B C$, which of the following is not true?

A. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
B. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
с. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
D. $\overrightarrow{A B}-\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$

Answer: C

- Watch Video Solution

19. If \vec{a} and \vec{b} are collinear vectors, then which of the following are incorrect?
A. $\vec{b}=\lambda \vec{a}$, for some scalar λ
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are not proportional
D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes.

- Watch Video Solution

Exercise 103

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 , respectivey having $\vec{a} \cdot \vec{b}=\sqrt{6}$.

D Watch Video Solution

2. Find the angle between the vectors
$\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

3. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $7 \hat{i}+\hat{j}$.

- Watch Video Solution

4. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.

- Watch Video Solution

5. Show that each of the given three vectors is a unit vector:
$\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ Also, show they are mutually perpendicular to each other.

- Watch Video Solution

6. $\begin{aligned} & \text { Find } \\ & (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8 \text { and }|\vec{b}| \text {, } \\ & (\vec{a}|=8| \vec{b} \mid .\end{aligned}$

- Watch Video Solution

7. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

- Watch Video Solution

8. Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.
9. Find $|\vec{x}|$ if for a unit vector $\vec{a},(\vec{x}-\vec{a})(\vec{x}+\vec{a})=12$

D Watch Video Solution

10.

Given
$\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

- Watch Video Solution

11. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two nonzero vectors \vec{a} and \vec{b}.

Watch Video Solution

12. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$ the what can be concluded about the vector \vec{b} ?

D Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

14. If either vector $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$. But the converes need not be true. Justify your answer with an example.
15. If either vector A, B, C of a triangle $A B C$ are (1,2,3),(-1,0,0),($0,1,2$), respectively, then find $\angle A B C .[\angle A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}]$.

D Watch Video Solution

16. Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10,-1)$ are collinear.

- Watch Video Solution

17. Show that vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{k}$ form the vertices of a right angled triangle.
18. If \vec{a} is a non zero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $a=1 /|\lambda|$

Answer: D

D Watch Video Solution

Exercise 104

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.
2. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.

D Watch Video Solution

3. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find θ and hence, the components of \vec{a}.

- Watch Video Solution

4. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$
5. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.

D Watch Video Solution

6. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ?

- Watch Video Solution

7. Let the vectors $\vec{a}, \vec{b} \vec{c}$ be given as $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
8. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true? Justify your answer with an example.

- Watch Video Solution

9. Find the area of the triangle with vertices $A(1,1,2) B(2,3,5)$ and $C(1,5,5)$.

- Watch Video Solution

10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k} \quad$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.
11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

12. Area of a rectangle having vertices A, B, C and D with positions
vectors $\quad-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k} \quad$ and $-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$, respectively is
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

Miscellaneous Exercise On Chapter 10

1. Write down a unit vector in XY - plane making an angle of 30° with the positive direction of x - axis.

Watch Video Solution
2. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$.

- Watch Video Solution

3. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

- Watch Video Solution

4. If $\vec{a}=\vec{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer.

- Watch Video Solution

5. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

D Watch Video Solution

6. Find a vector of magnitude 5 units and parallel to the resultant of the vectors
$\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

7. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

8. Show that the points $A(1,-2,-8) B(5,0,-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B divides $A C$.

- Watch Video Solution

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$ Also, show that P is the mid point of the line segment $R Q$.

- Watch Video Solution

10. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to its diagonal.Also, find its area.
11. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

- Watch Video Solution

12.

$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$
Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b}, and $\vec{c} \cdot \vec{d}=15$.

Watch Video Solution

13. Thescalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{c} \cdot \vec{d}=15$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

15. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$.
16. If θ is the angle between two vectors \vec{a} and \vec{b} then $\vec{a} \cdot \vec{b} \geq 0$ only when
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer: B

D Watch Video Solution

17. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them Then $\vec{a}+\vec{b}$ is a unit vector if
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{2 \pi}{3}$

Answer: D

- Watch Video Solution

18. The value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{j} \times \hat{i})=\ldots$.
A. 0
B. -1
C. 1
D. 3

- Watch Video Solution

19. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, when θ is equal to
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: B

