

MATHS

BOOKS - JBD PUBLICATION

TRIGNOMETRIC FUNCTIONS

Exercise

1. The value of
$$\frac{\cos 7x + \cos 5x}{\sin 7x - \sin 5x}$$
 is:

A. cot x

B. tan x

C. sin 6x

D. cos 6x

Watch Video Solution

2. For any real number of x and y, if cos x=cos y then:

A.
$$x=n\pi+(-1)^ny$$

B.
$$x=2n\pi\pm y$$

C.
$$x=n\pi\pm y$$

Answer:

Watch Video Solution

3. Radian measure of $\angle 105^{\circ}$ is:

A.
$$\frac{7\pi}{12}$$

B.
$$\frac{\pi}{12}$$

$$\mathsf{C.}-\frac{7\pi}{12}$$

D. none of these

Answer:

Watch Video Solution

4. The value of $\cos 75^{\circ}$ is:

A.
$$\dfrac{\sqrt{3}+1}{2\sqrt{2}}$$

B.
$$\frac{1-\sqrt{3}}{2\sqrt{2}}$$

$$egin{array}{c} \overline{3}-1 \ 2\sqrt{2} \ \overline{3}+1 \end{array}$$

C.
$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$
D. $\frac{\sqrt{3}+1}{2}$

Watch Video Solution

- **5.** If $\sin \theta = -\frac{1}{2}$ and $\cos \theta = \frac{\sqrt{3}}{2}$, then θ lies in:
 - A. 1st quadrant
 - B. lind quadrant
 - C. IIIrd quadrant
 - D. Ivth quadrant

Answer:

Watch Video Solution

6. The value of $\dfrac{1- an^215^\circ}{1+ an^215^\circ}$ is equal to:

- A. 1
- B. $\sqrt{3}$
- D. 2

- **7.** The value of $\dfrac{\cot 54^\circ}{\tan 36^\circ} + \dfrac{\tan 20^\circ}{\cot 70^\circ}$ is equal to:
 - A. 0
 - B. 2
 - C. 1
 - D. 3

Watch Video Solution

8. The value of $\sin^2 75^\circ - \sin^2 15^\circ$ is equal to:

A.
$$\frac{\sqrt{3}}{2}$$

B. 0

c. $\frac{1}{2}$

D. 1

Answer:

Watch Video Solution

9. If $\sin \theta = \frac{1}{2}$ and $\cos \theta = -\frac{\sqrt{3}}{2}$, then the general value of θ is:

A.
$$2n\pi+5rac{\pi}{6}$$

B.
$$2n\pi+rac{\pi}{4}$$

C.
$$2n\pi+rac{\pi}{6}$$

D.
$$2n\pi\pmrac{\pi}{4}$$

- **10.** The radius of a circle whose arc of length 20π subtends an angle of $\frac{2\pi}{3}$ radians at the centre is:
 - A. 25 cm
 - B. 30 cm
 - C. 35 cm
 - D. none of these

Watch Video Solution

11. If the angles of a triangle are in the ratio 3:4:5, then the greatest angle in radians is:

- A. $\frac{\pi}{3}$
- B. $\frac{2\pi}{3}$
- C. $\frac{5\pi}{12}$

D. none of these

Answer:

12. The angle between the minute and hour hands of a clock at
5: 40 is
A. 70°

B. 85°

C. 55°

D. none of these

Answer:

Watch Video Solution

13. A wheel makes 180 revolution in 1 minute. The angle in radians through which it will turn in 1 second is:

A. 2π

B.
$$3\pi$$

$$\mathsf{C.}\ 6\pi$$

Watch Video Solution

14. If heta and ϕ are acute angles such that $\cos \theta = \frac{13}{14}$ and $\cos \phi = \frac{1}{7}$, then value of $(\theta - \phi)$ is equal to:

A.
$$-\frac{\pi}{3}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{2}$$

D. none of these

Watch Video Solution

15.

The

value

of

$$\cos(70^{\circ} + x)\cos(10^{\circ} + x) + \sin(70^{\circ} + x)\sin(10^{\circ} + x)$$

is

equal to:

A. 0

B. $\frac{3}{2}$

D. none of these

Answer:

16. The value of $\sec\left(\frac{\pi}{4} + \alpha\right) \sec\left(\frac{\pi}{4} - \alpha\right)$ is equal to:

A. $2\sec 2\alpha$

B. an 2lpha

C. $2\cot lpha$

D. $2\cos2\alpha$

Answer:

17. If $\alpha + \beta = \frac{\pi}{2}$, then the maximum value of $\cos \alpha \cos \beta$ is:

A. 0

B. 1

c. $\frac{1}{2}$

$$\frac{1}{4}$$

Watch Video Solution

18. $\sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ}$ is equal to:

- A. $\frac{1}{16}$
- $\mathsf{B.}\;\frac{3}{16}$
- $\mathsf{C.}\ \frac{5}{16}$

D. none of these

Answer:

19. The value of
$$\frac{\sin \pi}{14} \frac{\sin(3\pi)}{14} \frac{\sin(5\pi)}{14}$$
 is equal to:

$$\mathsf{B.}\;\frac{1}{2}$$

C.
$$\frac{1}{4}$$
D. $\frac{1}{8}$

Watch Video Solution

20. If $0 \le x \le \pi$ and $\cos x = -\frac{4}{5}$ then $\cos \left(\frac{x}{2}\right)$ is equal to:

A.
$$\frac{3}{\sqrt{10}}$$
B. $-\frac{3}{\sqrt{10}}$

$$\mathsf{C.} \; \frac{1}{\sqrt{10}}$$

D. none of these

Answer:

Watch Video Solution

- **21.** $\cos 12^{\circ}\cos 24^{\circ}\cos 36^{\circ}\cos 48^{\circ}\cos 72^{\circ}\cos 84^{\circ}$ is equal to:
 - $\mathsf{A.}\;\frac{1}{16}$
 - $\mathsf{B.}\;\frac{1}{64}$
 - c. $\frac{1}{128}$

D. none of these

Answer:

 $\tan \theta + \sec \theta = 2\cos \theta$ lying in the interval $[0, 2\pi]$ is: A. 2

23. The solutions of the equation $\sin^2 x + 3\sin x = 0$ is:

The number of solutions of the equations

22.

Answer:

C.
$$\frac{\pi}{3}$$

D.	none	of	these
		•	

Watch Video Solution

24. Equations sinx+cos x = 2has

- A. one solutions
- B. two solutions
- C. three solutions
- D. none of these

Answer:

25. If
$$A-B=rac{\pi}{4}$$
 the (1+tanA)(1-tanB) is equal to:

B. 1

C. 0

D. 3

Answer:

Watch Video Solution

equal to:

26. If $A+B+C=180^{\circ}$ (athen(tanA+tanB+tanC)/(tanAtanBtanC) is

A. tanAtanBtanC

В. О

C. 1

D. none of these

Answer:

Watch Video Solution

27. Which of the following number is rational?

A. $\sin 15^{\circ}$

B. $\cos 15\,^\circ$

C. $\sin 15^{\circ} \cos 15^{\circ}$

D. $\sin 15^{\circ} \cos 75^{\circ}$

Answer:

1. Prove that: $\cos(x+135^\circ)-\cos(x-135^\circ)=\ -\sqrt{2}\sin x$

2. Find the solutions of the equation $\sin x = -rac{\sqrt{3}}{2}whenx \in [0,\pi]$

3. Prove that: $\frac{\cos 7x + \cos 5x}{\sin 7x - \sin 5x} = \cot x$

4. Prove that: sin3x=3sinx-4sin^3x

- **5.** Prove the following: $\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x$
 - Watch Video Solution

- **6.** Find the radian measures corresponding to the following degree measure: $-47^{\circ}\,30$ '
 - Watch Video Solution

- **7.** Find the radian measures corresponding to the followind degree measures:
 - Watch Video Solution

 240°

8. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

9. A circular wire of radius 7.5 cm is cut and bent so as to lie along the circumference of a circular hoop whose radius is 120 cm, find in degrees, the angle which is subtended at the centre of this loop.

10. Find the values of other five trignometric functions in each of the following:

$$\cos x = -\frac{1}{2}$$
, x lies in third quadrant.

11. Find the values of other five trignometric functions in each of the following: $\cot x = -\frac{3}{4}, \text{x lies in third quadrant.}$

12. Find the values of the trignometric functions in the following:

 $\cos ec(-1410^{\circ}).$

13. Find the values of the trignometric functions in the following: $\frac{\tan(19\pi)}{3}.$

14. Find the values of:

$$\sin\!\left(\frac{-11\pi}{3}\right)$$

15. Show that no value of θ can satisfy the equations:

$$6\sec^2\theta - 5\sec\theta - 1 = 0$$

16. Find the value of:

$$\cos\left(\frac{5\pi}{12}\right)$$

17. Find the value of:
$$\tan\left(\frac{13\pi}{12}\right)$$

18.

Watch Video Solution

$$\cos\left(\frac{\pi}{4} - x\right)\cos\left(\frac{\pi}{4} - y\right) - \sin\left(\frac{\pi}{4} - x\right)\sin\left(\frac{\pi}{4} - y\right) = \sin(x + y)$$

Prove

20. Prove the following: $\cos^2 2x - \cos^2 6x = \sin 4x \sin 8x$

19. Prove the following: $\sin^2 6x - \sin^2 4x = \sin 2x \sin 10x$

the

following:

21. Show that:
$$an 5x - an 3x - an 2x = an 5x an 3x an 2x$$

22. If
$$A+B=45^\circ$$
, then shown that $(1+\tan A)(1+\tan B)=2.$

23. Prove that
$$an 2x = rac{2 an x}{1 - an^2 x}$$

25. Show tha:

$$\cos 4A = 1 - 8\cos^2 A + 8\cos^4 A.$$

26. Show tha:

$$\cos 6A = 32\cos^6 A - 48\cos^4 A + 18\cos^2 A - 1$$

27. Prove the following: $\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x$

28. Prove the following: $\sin(150^\circ + x) + \sin(150^\circ - x) = \cos x$

29. Prove that $\sin 51^\circ + \cos 81^\circ = \cos 21^\circ$.

30. Show that:

$$sn10^{\circ} + \sin 20^{\circ} + \sin 40^{\circ} + \sin 50^{\circ} = \sin 70^{\circ} + \sin 80^{\circ}$$

31. Find the principal solutions $(0 \le x \le 2\pi)$ of the following euqtions:

$$\cos x = -\frac{1}{\sqrt{2}}$$

32. Find the principal solutions $(0 \le x \le 2\pi)$ of the following euqtions:

$$\tan x = -\sqrt{3}.$$

33. Find the principal and general solutions of the following equation: $\tan x = \sqrt{3}$

34. Find the principal and general solutions of the following equation:- $\sec x = 2$

watch video Solution

35. Find the general solution of the following equations:

 $\cos 4x = \cos 2x$

36. Find the general solutions of the equations sinx+sin3x+sin5x=0.

37. Find the general solution of the following equations:

 $\cos 4x = \cos 2x$

38. An athlete runs 4 times around a circular running a path to describe 1760 metres. What is the angle in radians

degrees subtended at the centre of the circle, when he had runs a distance of 308 metres?

39. Prove that:
$$\cot^2\frac{\pi}{6}+\cos ec\frac{5\pi}{6}+3\tan^2\frac{\pi}{6}=6$$

40. In \triangle ABC, prove that

cos(A+B)+cosC=0

41. In $\triangle ABC$, prove that

$$\cos\!\left(\frac{A+B}{2}\right) = \frac{\sin C}{2}$$

42. Prove the following:

$$\cos\Bigl(rac{3\pi}{2}+x\Bigr)\!\cos(2\pi+x)\Bigl[\cot\Bigl(rac{3\pi}{2}-x\Bigr)+\cot(2\pi+x)\Bigr]=1$$

43. If
$$an lpha = rac{m}{m+1}$$
 and $an eta = rac{1}{2m+1}$, the find the value of $lpha + eta.$

44. If
$$\tan(\alpha+\theta)=n\tan(\alpha-\theta)$$
, show that:

- $(n+1)\sin 2\theta = (n-1)\sin 2\alpha.$
 - **Watch Video Solution**

- **45.** Prove that: $\frac{1+\sin 2x-\cos 2x}{1+\sin 2x+\cos 2x}=\tan x$
 - Watch Video Solution

46. Show that

$$\sqrt{2+\sqrt{2+\sqrt{2+2\cos 8}}}=2\cos heta$$

- **47.** Find $\sin\frac{x}{2},\cos\frac{x}{2}$ and $\tan\frac{x}{2}$ in the following:- $\tan x=-\frac{4}{3}$, x in quadrant II
 - Watch Video Solution

- **48.** Find $\sin\frac{x}{2},\cos\frac{x}{2}$ and $\tan\frac{x}{2}$ in the following:- $\cos x=-\frac{1}{3}$, x in quadrant III
 - Watch Video Solution

- **49.** Prove the following: $\dfrac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$
 - Watch Video Solution

50. Show that: $rac{\sin 11x \sin x + \sin 7x \sin 3x}{\cos 11x \sin x + \cos 7x \sin 3x} = an 8x$

51. Prove the following:

 $\sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin 4x$

52. Find the general solution for each of the following equations:

$$2\cos^2 x - 5\cos x + 2 = 0$$

53. Find the general solution for each of the following equations:

$$4\sin^2\theta - 8\cos\theta + 1 = 0$$

54. Find the general solution of the following equations: $\sec^2 2x = 1 - \tan 2x$

55. Find the general solution of the following trignometric equations:

tanx+tan2x+tanx tan2x=1

56. Find the general solution of the following trignometric equations:

 $\tan^2 \theta + \cot^2 \theta = 2$

$$\left(\cos x - \cos y
ight)^2 + \left(\sin x - \sin y
ight)^2 = 4\sin^2rac{x-y}{2}$$

Watch Video Solution

58. If $\sin x = \frac{3}{5}$, $\cos y = -\frac{12}{13}$, where x and y both lie in second quadrant, find the value of $\sin(x+y)$.

Watch Video Solution

59. Prove that:

$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4\sin^2\frac{x - y}{2}$$

60. Show that:
$$rac{\sin^2\pi}{8} + rac{\sin^2(3\pi)}{8} + rac{\sin^2(5\pi)}{8} + rac{\sin^2(7\pi)}{8} = 2$$

61. Show that:
$$rac{\cos\left(rac{3\pi}{4}
ight)-\cos\left(rac{2\pi}{3}
ight)}{\cos\left(rac{3\pi}{4}
ight)+\cos\left(rac{2\pi}{3}
ight)}=3-2\sqrt{2}.$$

62. Prove that:
$$\cos A. \cos \left(\frac{\pi}{3} - A \right). \cos \left(\frac{\pi}{3} + A \right) = \frac{1}{4} \cos 3A$$

63. Prove that:
$$an\Bigl(rac{x}{2}\Bigr) = \pm \sqrt{rac{1-\cos x}{1+\cos x}}$$

64. Find the value of: $\cos\left(\frac{\pi}{2}\right)$

Watch Video Solution

65. If $\cos x = \frac{1}{2} \left(a + \frac{1}{a} \right)$, show that: $\cos 2x = \frac{1}{2} \left(a^2 + \frac{1}{a^2} \right)$

Watch Video Solution

66. If $\cos x = \frac{1}{2} \left(a + \frac{1}{a} \right)$, show that: $\cos 3x = \frac{1}{2} \left(a^3 + \frac{1}{a^3} \right)$

67.

Prove

that:

$$\cos 2x \cos \left(\frac{x}{2}\right) - \cos 3x \cos \left(\frac{9x}{2}\right) = \sin 5x \sin \left(\frac{5x}{2}\right)$$

