© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JBD PUBLICATION

KINEMATICS

Exercise

1. Three balls profected upwards with the same
uinitial speed at angle $\theta=30^{\circ}, 45^{\circ}$ and 60°
respectively.Let the range of the ball be expressed
by R_{θ}.Then:
A. $R_{30}>R_{45}>R_{60}$
B. $R_{60}>R_{45}>R_{30}$
C. $R_{45}>R_{30}$
D. $R_{45}<R_{60}$.

Answer:

- Watch Video Solution

2. When the momentum of body is increased by three times,its K.E. becomes:

A. Twice

B. Half

C. Four times

D. Nine times.

Answer:

- Watch Video Solution

3. Which of the following vectors identities is/are false?

$$
\begin{aligned}
& \text { A. } \vec{A}+\vec{B}=\vec{B}+\vec{A} \\
& \text { B. } \vec{A}+\vec{B}=-(\vec{B}+\vec{A})
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. }(\vec{A}+\vec{B})+\vec{C}=\vec{A}+(\vec{B}+\vec{C}) \\
& \text { D. } \vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{C})+\vec{B}
\end{aligned}
$$

Answer:

D Watch Video Solution

4. If $\vec{A}+\vec{B}=\vec{A}-\vec{B}$, then:

A. \vec{A} is a null vector
B. \vec{B} is a null vector
C. both \vec{A} and \vec{B} are null vecors
D. neither $\vec{A} \operatorname{nor} \vec{B}$ is a null vector.

D Watch Video Solution

5. What happens if a vector if a ector is multiplied by a number 10 ?
A. The magnitude off the vector is ten times
but its direction reains same
B. The magnitude of the vector remains same but its direction is reversed
C. The magnitude of the vector is ten times and its direction is reversed
D. neither the magnitude nor the direction of the vector undergo any change.

Answer:

- Watch Video Solution

6. Two vectors of the same physical quantity are equal if:
A. they have different direction and different magnitudes
B. they have different directions but have same magnitudes
C. they have same directions but different magnitudes
D. they have same directions and have the same magnitudes.

Answer:

7. A body A is going frm south to north and body B is going from west to east .then the directin of relative velocity of A with respect to B is :
A. north-west
B. south-west
C. north-east
D. south-east.

Answer:

8. Numerical value of magnitude of a physical quantity is :
A. directly propotional to magnitude of the unit
B. inversely proportional to magnitude of unit
C. independent of system of unit
D. depends on the quantity.

Answer:

D Watch Video Solution
9. A man walks at a speed of $6 \mathrm{~km} h^{-1}$ for 1 km and $8 \mathrm{~km} h^{-1}$ for the next 1 km .What is the average speed for the walk fo 2 km ?
A. $7 k m h^{-1}$
B. $16 \mathrm{~km}^{-1}$
C. $12 k m h^{-1}$
D. $6 k m h^{-1}$.

Answer:

10. A body covers $\frac{1}{4} t h$ part of a circular path.Calculate the ration of distance and displacement.
A. π
B. $\frac{\pi}{2 \sqrt{s}}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{\sqrt{2}}$

Answer:
11. The displacement-time graph of a motion is shown in figure.The ratio of the speeds during the rfirst two seconds and the next four seconds is :

A. 1:1
B. $1: 2$
C. 2:1
D. $1: \sqrt{2}$.

D Watch Video Solution

12. The acceleration fo a body in $m s^{-2}$ starting from rest varies with time in secnds as per the relation $a=3 t+4$ then the magnitude of velocity of the body at $t=2 \mathrm{~s}$ will be :
A. $14 m s^{-1}$
B. $16 m s^{-1}$
C. $12 m s^{-1}$
D. $10 \mathrm{~ms}^{-1}$.

D Watch Video Solution

13. Figure below shows the velocity-time graph of a
car moving on a straight road.The corresponding acceleration-=time graph will be:

A.

B.
(B)

C.

D.
(D)

D Watch Video Solution

14. A ball is projected upwards at a certain angle with th ehorizontal .Which of the following statement is // are correct?
A. At the highest point the velocity of the projectile is zero
B. At the highest point the acceleration of the
projectile is zero
C. At the highest point the velocity of the projectile is along the vertical direction

D. At the highest point the acceleration of the projectile is vertically.

Answer:

D Watch Video Solution

15. A bomb is dropped from an aeroplane when it is at a heigth h directly abovve a target .If the aeroplane is moving horizontally at a spee u,the
distance by which the bomb will mis the target is given by:
A. $2 u \sqrt{\frac{h}{g}}$
B. $u \sqrt{\frac{h}{g}}$
C. $u \sqrt{s \frac{h}{g}}$
D. $\sqrt{\frac{h}{2 g}}$.

Answer:

- Watch Video Solution

16. An athelete completes one round of a circular
track radius R in 40 s.What will be his displacement at the end of 2 minutes 20 sec ?
A. Zero
B. 2 R
C. $2 \pi R$
D. $7 \pi R$.

Answer:

- Watch Video Solution

17. A particle is gien a displacement of 4 m in the xy-plane.If the x-component of the displacement vector is 2 m ,the y -component wll be:
A. 2 m
B. $2 \sqrt{2} m$
C. $2 \sqrt{3} m$
D. $4 m$.

Answer:

D Watch Video Solution
18. A 120 m long train is moving west at a speed of
$10 \mathrm{~m} s^{-1}$.A small bird flying cast at a speed of
$5 m s^{-1}$ crosses the train. What is the time taken by
the bird to cross the train?
A. 24 s
B. 12 s
C. 8 s
D. 4 s .

Answer:

19. Calculate the angular speed of the wheel making 240 revolutions per minute.
A. $40 \pi r a d s^{-1}$
B. $\pi r a d s^{-1}$
C. $60 \pi r a d s^{-1}$
D. $80 \pi r a d s^{-1}$.

Answer:

- Watch Video Solution

20. A boy whirls a stone in a horizontal circle 2 m above the ground by mean of a string 1.25 m long
.The string breaks nd the stone flies off horizontally,striking the ground 10 m away.What is
the magnitude of the centripetal acceleration during circular motion ?Take $g=10 \mathrm{~ms}^{-2}$.
A. $1000 \mathrm{~ms}^{-2}$
B. $200 \mathrm{~ms}^{-2}$
C. $300 \mathrm{~ms}^{-2}$
D. $400 \mathrm{~ms}^{-2}$.
21. A particle executing circular motion of radius 5
m and linear speed of $3 \mathrm{~ms}^{-1}$ which is increasing
at the rate of $2 \mathrm{~ms}^{-2}$. What is the acceleration of the particle?
A. $5 m s^{-2}$
B. $\frac{9}{25} m s^{-2}$
C. $2.7 m s^{-2}$
D. $2 m s^{-2}$.
22. Which of the following remains constant during the motion of a projectile fired from a planet?
A. Horizontal component of velocity
B. Vertical comopnent of velocity
C. Momentu
D. Kinetic energy

Answer:
23. A pendulum is suspended from the roof of a
car. The car is moving with an acceleration of
$4.9 \mathrm{~ms}^{-2}$.Then angle to which the vertical string will be inclined is :
A. 0°
B. 30° nearly
C. 10° nearly
D. 20°.
24. A body is thrown vertically up from earth with a velocity of $100 \mathrm{~ms}^{-1}$.It will return to earth approximaterly after:
A. 10 s
B. 20 s
C. 15 s
D. 5 s .

Answer:
25. A particle starts moving from the position of rest under a constant acceleration.It travels a distance x in the first 10 s and distance y is next 10 s,then:
A. $x=y$
B. $y=2 x$
C. $y=3 x$
D. $y=4 x$.

Answer:

26. The angle of projection at which the horixontal
range and maximum heigth of projectile are equal
is :
A. 45°
B. 60°
C. $\theta=t n^{-1}(4)$
D. $\theta=\tan ^{-1}(0.25)$.

Answer:

27. The angulr velocity of earth's rotation on its own axis is :
A. $\frac{\pi}{6}$ radhour $^{-1}$
B. $\frac{\pi}{r}$ adhour $^{-1}$
C. $\frac{\pi}{24}$ radhour $^{-1}$
D. 15 radhour $^{-1}$.

Answer:
28. If a freely falling body travels in the last second
a distane equal to the distance travelled by it in the frist three seconds, the time of travel is :
A. 6 sec
B. 5 sec
C. 4 sec
D. 3 sec .

Answer:

- Watch Video Solution

29. Name the physical quantities which remains
constant for a particle moving along a circular path in a horizontal plane in uniform motion.
A. angular momentum
B. constant cceleration
C. constant velocity
D. no work done.

Answer:

30. The velocity of a projectile at the intital pont A is $(2 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$. It's velocity (in $\mathrm{m} / / \mathrm{s}$) at the piont B is [fig.]

A. $2 \hat{i}-3 \hat{j}$
B. $2 \hat{i}+3 \hat{j}$
C. $-2 \hat{i}-3 \hat{j}$
D. $-2 \hat{i}+3 \hat{j}$

D Watch Video Solution

31. A projectile is fired at an angle of 45° with the horizontal.Elevation angle of the projectile at its highest piont as seen from the point of projection is :
A. 60°
B. $\tan ^{-1}\left(\frac{1}{2}\right)$
C. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
D. 45°.

Answer:

- Watch Video Solution

32. The vectors \vec{A} and \vec{B} are such that $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$,then the angle between two vectros will be :
A. 0°
B. 60°
C. 90°
D. 180^@`.

Answer:

- Watch Video Solution

33. A particle is actedsimultaneously by mutually perpendicular simple hormonic motions
$x=a \cos 1 \omega t$ and $y=a \sin \omega t$. The trajectory of motion of the particle will be
A. an elliptical path
B. a circular path

C. a parabolic path

D. a straigth line path inclined equally to x - and

y-plane.

Answer:

D Watch Video Solution

34. In the entire path of a projectile,the quantity that remain unchaged is :
A. vertical component of velocity
B. horizontal component of velocity
C. kinetic energy
D. potential energy.

Answer:

D Watch Video Solution

35.

Three
vectors
$\vec{A}=a \hat{i}+\hat{j}+\hat{k}, \vec{B}=\hat{i}+b \hat{j}+\hat{k}$ and
$\vec{C}=\hat{i}+\hat{j}+c \hat{k}$ are mutually perpendicular .The respective values of a, b and c are
A. $0,0,0$
B. $-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}$
C. $1,-1,1^{`}$
D. $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.

Answer:

D Watch Video Solution

36. The angle between $A=\hat{i}+\hat{j}$ and $B=\hat{i}-\hat{j}$ is :
A. 45°
B. 90°
C. -45°
D. 180°.

Answer:

- Watch Video Solution

37. Which one of the following statements is true?
A. A scalar quantity is the one that is conserved in a process.
B. A scalar quantity is the one that can never
take negative values.
C. A scalar quantity is the one that does not vary from one point to another is space.
D. A scalar quanity has the same vaue for observers with different orientations of the axes.

Answer:

D Watch Video Solution

38.

Consider
potential,electrical charge,temperature,area.Out of these, the only vector quantities are:
A. Impulse,pressure and area
B. Impulse and area
C. Area and gravitational potential
D. Impulse and pressure

Answer:

D Watch Video Solution
39. In a two dimensional motion,instantaneous speed v_{0} is a positive constant.Then which of the following are necessarily true?
A. The average velocity is not zero at any time.
B. Average acceleratin must always vanish.
C. Displacements in equal time inervals are equal.
D. Equal path lengths are traversed in equal intervals.
40. In a two dimensional motion,instantaneous
speed v_{0} is a positive constant.Then which of the following are necessarily true?
A. The acceleratin of the particle is zero.
B. The acceleration of the particle is bounded.
C. the acceleration of the particle is necessarily
in the plane of motion.
D. The particle must be undergoing in uniform circular motion.

Answer:

D Watch Video Solution

Example

1. Is it possible that the velocity of an object be in
a direction other than the direction of
acceleration?
(Watch Video Solution
2. Under what condition is the relation $S=u t$ correct?

- Watch Video Solution

3. The displacement of a particle is directly proportional to the square of the time.Explain whether the object is moving with uniform velocity or with uniform acceleration.
4. A player throws a ball upwards with an initial speed of $29.4 m s^{-1}$:- What is the direction of acceleration during the upward motion of the ball ?

- Watch Video Solution

5. What will be the shape of displacement-time graph when acceeration or retarddation is uniform?
6. Can a constant acceleration change the direction of motion of an objet?

D Watch Video Solution

7. Which of the two velcotiy and acceleration, gives
the direction of motion of the body? Explain.

- Watch Video Solution

8. How can the distance travelled by an object be
calculated from the velocity - time graph?
9. What will be the shape of displacement-time graph when acceeration or retarddation is uniform?

- Watch Video Solution

10. If $\vec{A}+\vec{B}=\vec{A}-\vec{B}$, then:

- Watch Video Solution

11. What is subtraction of a vector?

D Watch Video Solution
12. Vectors cannot be added algebraically. Why?

D Watch Video Solution

13. Is commutative law applicable too vector subtraction?
14. If $\vec{A}=2 \hat{i}+5 \hat{j}$,what is the unit vector perpendicular to \vec{A} ?

- Watch Video Solution

15. What is unit vector?

- Watch Video Solution

16. Is the magnitude of $(\vec{A}-\vec{B})$ same as that of $(\vec{B}-\vec{A})$?
17. A vector of magnitude 5 ,makes an angle 60° with the y-axis .Express the vector in mathematical terms?

- Watch Video Solution

18. At what points on the projectile trajectory is the speed minimum
19. What is the vertical component of velocity of a projectile at its maximum height?

D Watch Video Solution

20. Shells of different masses are fired from a
cannon at same angle with same speed.Will their
range and time fo flight differ?

D Watch Video Solution
21. A ball will project with a speed u at an angle of projection 30° has a range R.Is there any other value of angle of projection at which the range with same initial speed u is R ?

D Watch Video Solution

22. At what angle ith the verticle should a projectile be projected so that its range is maximum?
23. If u is the velocity of projection, what is the value of maximum horizontal range?

D Watch Video Solution

24. Name the quantity which remains unchanged during the flight of an oblique projectile.

- Watch Video Solution

25. How many directions of projection are possible for the same horizontal range?
26. A bomb is dropped from an aeroplane when it is at a heigth h directly abovve a target .If the aeroplane is moving horizontally at a spee u,the distance by which the bomb will mis the target is given by:

D Watch Video Solution

27. A ball is thrown up and then it returns to the thrower .Is it a projectile?
28. If the angle of projection fo a projectile is doubled ,will the horizontal range become double ,keeping its velocity constant?

- Watch Video Solution

29. Write the relation between linear velocity
(v),angular velocity(omega) and radius of circle(r).
30. What is the effect of air resistance on the time of flight and horizontal range of the projectile?

D Watch Video Solution

31. State, for each of the following physical quantities, if it is a scalar or a vector : volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement, angular velocity.

- Watch Video Solution

32. What is the essential condition for addition of two vectors?

- Watch Video Solution

33. What is the physical meaning of zero vector?

- Watch Video Solution

34. Write expression for a position vector in space.

D Watch Video Solution
35. Write expression for displacement vector.

D Watch Video Solution

36. What is the direction of velocity at any point on the path of an object?

- Watch Video Solution

37. Displacement vector is fundamentally a position? Comment on this statement.
38. If fifty vectors,each of magnitude 10 units ,are represented by the sides of a polygon ,all taken in the same order.What will be the resultant?

- Watch Video Solution

39. What is the minimum number of vectors of unequal magnitude required to produce a zero resultant?
40. What is the angle made by vector $\vec{A}=\hat{i}+2 \hat{j}$ with x-axis?

D Watch Video Solution

41. Calculate the magnitude off position vector R $(3 \hat{i}+4 \hat{j}+7 \hat{k})$.

- Watch Video Solution

42. If the magnitude of vectors \vec{P}, \vec{Q} and oversert $\rightarrow R$ are 3,4 and 5 units respectively,and
if $\vec{P}+\vec{Q}=\vec{R}$, then what will be the angle between \vec{P} and \vec{R} ?

D Watch Video Solution

43. A vector quantity is multiplied by a scalar quantity . What will be the angle between the new vector and the original vector?

D Watch Video Solution

44. Does the order, in which a number of vectors are added ,matter or not?

(-) Watch Video Solution

45. If $|\vec{A} \times \vec{B}|=|\vec{A} \cdot \vec{B}|$,then find the angle between \vec{A} and \vec{B}.

- Watch Video Solution

46. If $\vec{A}=\hat{i}-2 \hat{j}+3 \hat{k} k$. Find the direction cosines of \vec{A}.
47. Can two non -zero vectors give zero resultant when they cross-multiply each other?

D Watch Video Solution

48. If \vec{A}, \vec{B} and \vec{C} are mutually perpendicular to each other ,then find the value of $\vec{A} \cdot(\vec{C}+\vec{B})$.

D Watch Video Solution

49. For what value of a are $\vec{A}=a \hat{i}-2 \hat{j}+\hat{k}$ and
$\vec{B}=2 a \hat{i}-a \hat{j}-4 \hat{k}$ perpendicular.

(D) Watch Video Solution

50. Explain addition of vectors using graphical method.

D Watch Video Solution

51. State, for each of the following physical quantities, if it is a scalar or a vector : volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement, angular velocity.
52. Can three vector not in one plane give a zero resultant?Can four vectors do?

D Watch Video Solution

53. Can a vectro be zero if its components is not zero?

- Watch Video Solution

54. Is it necessary to mention the direction of a vector having zero magnitude?

- Watch Video Solution

55. What is the component method for adding vector?

D Watch Video Solution

56. An object originally at the opint $(2,5,1) \mathrm{m}$ is given a displacement $8 \hat{i}-2 \hat{j}+\hat{k}$ m. Find the
coordinates of its new position.

D Watch Video Solution

57. Three vectors \vec{P}, \vec{Q} and \vec{R} satisfy the relations $\vec{P} \cdot \vec{Q}=0$ and $\vec{P} \cdot \vec{R}=0$.To which vector, the vector \vec{P} is parallel to.

- Watch Video Solution

58. Calculate the angle between 2 newton and a 3 newton force so that their resultant is 4 newton.
59. At what angles do the two fores $(\vec{P}+\vec{Q})$ adn $($ overst $\rightarrow P-\vec{Q})$ act so that the agnitude of the resultantts is $\sqrt{2\left(P^{2}+Q^{2}\right)}$?

(D) Watch Video Solution

60. Two forces of 6 N and 8 N act at a point at an angle 90° with each other.Find the magnitude and direction fo the resultant force.
61. A skilled gunman always keeps his gun tilted above the line of sight while shooting .Why?

D Watch Video Solution

62. At what points on the projectile trajectory is
the speed minimum

- Watch Video Solution

63. At what point of trajectory an object thrown
upward is the acceleration perpen-dicular to the
velocity.

- Watch Video Solution

64. A tennis ball jumps higher at hills than at planes. Explain.

- Watch Video Solution

65. Explain that a uniform circular motion is an accelerated motion.
66. A body is projected horizontally from the to of a cliff with a velcity of $9.8 m s^{-1}$. Wghat time elapses before the horizontal and vertical velocitties become equal ?

- Watch Video Solution

67. Two paper screens A and B are separated by a distance of 100m.A bullet plerces A and than B. The hole is B is 10 cm below the hole in A.If teh bullet is travelling horizontally at the time of hitting A,then what is the velocity of the bullet at A ?
68. Shows that the projection angle θ_{o} for a projectile launched from the origin is given by $\theta_{o}=\tan ^{-1}\left(\frac{4 h_{m}}{R}\right)$ where the symbols have their usual meaning.

- Watch Video Solution

69. A cricket ball is hit at 45° to the horizontal
with a kineti energy K.Find teh kinetic energy at the hitghest point.
70. A body is projected with a velocity u in a direction making angle θ with the horizontal. Show that path of the projectile is a parabola. Find the maximum heighth reached, the time of flight and horizontal range.

- Watch Video Solution

71. A body is projected with a velocity u in a direction making angle θ with the horizontal. Show that path of the projectile is a parabola. Find the
maximum heighth reached, the time of flight and horizontal range.

D Watch Video Solution

72. A body is projected with a velocity u in a direction making angle θ with the horizontal. Show that path of the projectile is a parabola. Find the maximum heighth reached, the time of flight and horizontal range.

- Watch Video Solution

73. A body P of mass m is thrown with velocity u at an angle 30° to the horizontal and another body Q is of teh same mass be projected with velocity u at an angle 60° to the horizontal . Find the ratio of the horizonta range nd maximum heights of P and

Q.

(D) Watch Video Solution

74. The range of a particle when launched at an angle of 15° with horizontal is 1.5 km . What is the
range of the projectile when launched at an angle of 45° to the horizonta?

D Watch Video Solution

75. A ball is projected horizontally with a velocity of $4 m s^{-1}$. What will be its velocity after 0.7 sec $\left(g=10 m s^{-2}\right) ?$

- Watch Video Solution

76. Two bodies A and B are projected $\sqrt{2} u$ and u respectively.They cover the same horizontal
range.If body A is projected at 15° with horizontal,then what is the angle of projectio of bodyB?

- Watch Video Solution

77. A body is projected with a velocity u in a direction making angle θ with the horizontal. Show that path of the projectile is a parabola. Find the maximum heighth reached, the time of flight and horizontal range.

D Watch Video Solution

78. Can an object be at rest as well as in motion at the same time?

- Watch Video Solution

79. Give one physical difference between average velocity and instantaneous velocity.

D Watch Video Solution

80. Define relative velocity?
81. Is the speed-time graph shown in fig. possible?

Fig.

- Watch Video Solution

82. What is common among two position - time graphs in fig.?

Fig.

- Watch Video Solution

83. Following ,fig.shows a velocity-time graph.At which of the marked points is the acceleration

Zero

Fig.

- Watch Video Solution

84. Following ,fig.shows a velocity-time graph.At which of the marked points is the acceleration
maximum?

Fig.

D Watch Video Solution

85. Galileo's experminet showed that if the two objects of unequal masses are dropped from the sme height in vaccum, the times required by tehm are equal to reach the ground.But,if they are shown vertically upwards in vaccum with the same
initial velocity what is the ratio of the times required to reach the ground?

- Watch Video Solution

86. A uniformly moving cricket ball is turned back
by hitting it with a bat for a very short time interval. Show the variation of its acceleration with time. (Take acceleration in the bakward direction as positive).

- Watch Video Solution

87. Which of the following is NOT the characteristic of displacement?

D Watch Video Solution

88. Show that rest and motion are relative terms.

D Watch Video Solution

89. A body has a uniform velocity in frame of reference X.Is there any other frame of reference in which the body can be at rest?

D Watch Video Solution

90. Two stones of different sizes are dropped simultaneously from the top of a bulding. Which stone would reach the ground earlier?

- Watch Video Solution

91. Two balls of different masses (one lighter and other heavier) are thrown vertically upward with same initial speed. Which one will rise to the greater height)?
92. A racing car accelerates uniformly on a straight road from rest to a speed of $180 \mathrm{kmh}^{-1}$ in 25 sec.Find the total distance covered by the car in this time.

- Watch Video Solution

93. A ca travelling at $9 \mathrm{~ms}^{-}$accelerates and attains
a speed of $27 \mathrm{~ms}^{-1}$ in 5 s . Calculate the average acceleration and the distance travelled in 5 s .
94. A player throws a ball upwards with an initial velocity u.What is the direction of accdeleration during the upward motion of the ball?

D Watch Video Solution

95. Define uniformly accelerated motion and nonuniformly accelerated motion.
96. What will be the shape of displacement-time graph when acceeration or retarddation is uniform?

D Watch Video Solution

97. How can the distance travelled by an object be
calculated from the velocity - time graph?

- Watch Video Solution

98. Is the acceleration of a car greater when teh accelerator is pushed to the floor or when brake pedal is pushed hard?

D Watch Video Solution

99. What will be the shape of displacement-time graph when acceeration or retarddation is uniform?

- Watch Video Solution

100. A particule travelling due east at $2 m s^{-1}$ is uniformly accelerated at $5 m s^{-2}$ for 4 sec.Calculate the displacement of the particle.

D Watch Video Solution

101. A truck travelling at a speed at a speed of $25 m s^{-2}$,slows down to a speed of $5 m s^{-1}$ in 10
s.Calculate the acceleration of the truck during these 10 seconds.

- Watch Video Solution

102. Obtain equation of motion $S=u t+\frac{1}{2} a t^{2}$ for constant acceleration using method of calculus $. S=$ displacement,$u=$ initial velocity, $t=$ time.

- Watch Video Solution

103. Define acceleration .What are positive and negative accelerations?
104. A jet airplane travelling at the speed of $500 \mathrm{kmh}^{-1}$, ejects its products of combustion at the speed of $1500 \mathrm{kmh}^{-1}$, relative to the jet plane.

What is the speed of the latter with respect to an observer on the ground ?

- Watch Video Solution

105. Define position-time relation.

- Watch Video Solution

106. Derive the following relations for uniformly accelerated motion.

Velocity-time relation

D Watch Video Solution

107. Write short note on free fall.

D Watch Video Solution

108. Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform
speed of $72 k m h^{-1}$ in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by $1 \mathrm{~ms}^{-2}$. If after 50 s , the guard of B just brushes past the driver of A, what was the original distance between them?

D Watch Video Solution

109. On a two-lane road, car A is travelling with a speed of $36 \mathrm{kmh}^{-1}$. Two cars B and C approach
car A in opposite directions with a speed of
$54 k m h^{-1}$ each. At a certain instant, when the distance $A B$ is equal to $A C$, both being 1 km , B
decides to overtake A before C does. What minimum acceleration of car B is required to avoid an accident?

- Watch Video Solution

110. Figure 3.24 gives the $x-t$ plot of a particle in one-dimensional motion. Three different equal intervals of time are shown. In which interval is the average speed greatest, and in which is it the least ? Give the sign of average velocity for each
interval.

- Watch Video Solution

111. Plot ,displacement-time graph when an object
is moving with infinite velocity.Is such a motion of
an object ever possible?

D Watch Video Solution

112. A steam boat goes across a lake and comes
back (a) On a quit day when the water is still and
(b) On a rough day when there is uniform air current so as to help the journey onward and to impede the journey back. If the speed of the launch on both days was same, in which case it will complete the journey in leaser time.

D Watch Video Solution

113. In which of the following examples of motion,
can the body be considered approximately a point object:

- Watch Video Solution

114. In which of the following examples of motion,
can the body be considered approximately a point object:
115. In which of the following examples of motion,
can the body be considered approximately a point object:

- Watch Video Solution

116. In which of the following examples of motion,
can the body be considered approximately a point object:

- Watch Video Solution

117. The position-time(x-t) graphs for two children
A and B returning from their school O to their homes P and Q respectively are shown in fig.

Choose the correct entries in the bracets below:
(A / B) overtakes $\quad(B / A)$ on the road (once/twice).
A. (A//B) lives closer to the school than (B//A).
B. (A / B) starts from the school earlier than
(B/A).
C. (A / B) walks faster than (B / A)

D. A and B reach home at the (same/different)

 time(A/B) overtakes (B/A) on the road (once/twice).

Answer:

- Watch Video Solution

118. The position-time(x-t) graphs for two children
A and B returning from their school O to their
homes P and Q respectively are shown in fig.
Choose the correct entries in the brackets below:

- Watch Video Solution

119. The position-time(x-t) graphs for two children
A and B returning from their school O to their homes P and Q respectively are shown in fig.

Choose the correct entries in the bracets below:
(A / B) walks faster than (B / A).

- Watch Video Solution

120. The position-time (x-t) graphs for two children
A and B returning from their school O to their homes P and Q respectively are shown in fig.

Choose the correct entries in the bracets below:
A and B reach home at the (same / different)time.

D Watch Video Solution

121. The position-time(x-t) graphs for two children
A and B returning from their school O to their
homes P and Q respectively are shown in fig.
Choose the correct entries in the bracets below:
(A / B) overtakes $\quad(B / A) \quad$ on the road (once/twice).

D Watch Video Solution

122. A woman starts from her home at 9.00 am,
walks with a speed of $5 k m h^{-1}$ on a straight road
up to her office 2.5 km away, stays at the office up to 5.00 pm , and returns home by an auto with a speed of $25 \mathrm{kmh}^{-1}$. Choose suitable scales and plot the x-t graph of her motion.

D Watch Video Solution

123. A drunkard walking in a narrow lane takes 5
steps forward and 3 steps backward, followed
again by 5 steps forward and 3 steps backward, and so on. Each step is 1 in long and requires 1 s .

Plot the $x-t$ graph of his motion. Determine graphically and otherwise how long the drunkard takes to fall in a pit 13 m away from the start.

- Watch Video Solution

124. A jet airplane travelling at the speed of $500 \mathrm{kmh}^{-1}$, ejects its products of combustion at the speed of $1500 \mathrm{kmh}^{-1}$ ' relative to the jet plane.

What is the speed of the latter with respect to an observer on the ground?

D Watch Video Solution

125. If \vec{A}, \vec{B} and \vec{C} are mutually perpendicular to each other, then find the value of $\vec{A} \cdot(\vec{C}+\vec{B})$.

- Watch Video Solution

126. Explain why we express the laws of physics in vector form?
127. If $\vec{A}=\hat{i}-2 \hat{j}+3 \hat{k} k$.Find the direction cosines of \vec{A}.

D Watch Video Solution

128. If $|\vec{A} \times \vec{B}|=|\vec{A} \cdot \vec{B}|$,then find the angle between \vec{A} and \vec{B}.

- Watch Video Solution

129. Can two non -zero vectors give zero resultant when they cross-multiply each other?

D Watch Video Solution

130. In $\vec{F}=q(\vec{v} \times \vec{B})$, which pair of vectors are always at right angles to each other?

- Watch Video Solution

131. Show that $|\vec{A}+\vec{B}|^{2}-|\vec{A}-\vec{B}|^{2}=4 \vec{A} \cdot \vec{B}$

132. Show that vector addition is commutative.

- Watch Video Solution

133. Does the nature of a vector change when it is multiplied by a scalar?

- Watch Video Solution

134. Does the order, in which a number of vectors are added ,matter or not?

D Watch Video Solution
135. Explain addition of vectors using graphical method.

- Watch Video Solution

136. What is the resultant vector?
137. Calculate the magnitude off position vector R $(3 \hat{i}+4 \hat{j}+7 \hat{k})$.

- Watch Video Solution

138. If the magnitude of vectors \vec{P}, \vec{Q} and oversert $\rightarrow R$ are 3,4 and 5 units respectively,and if $\vec{P}+\vec{Q}=\vec{R}$, then what will be the angle between \vec{P} and \vec{R} ?
139. Displacement vector is fundamentally a position? Comment on this statement.

D Watch Video Solution

140. Why is zero vector needed?

- Watch Video Solution

141. If sum and difference of two vectors \vec{R} and \vec{S}
are at right angle equal to each other, then show
that the vectors are equal in magnitude.
142. Differentiate between scalars and vectors with examples.

- Watch Video Solution

143. Define Resolution?

- Watch Video Solution

144. Derive the relation between linear velocity and angular velocity.

D Watch Video Solution

145. What are the two angles of projection of a projectile with velocity $30 \mathrm{~ms}^{-1}$, so that the horizontal range is 45 m .Take $g=10 \mathrm{~ms}^{-2}$.

- Watch Video Solution

146. How many directions of projection are possible for the same horizontal range?

D Watch Video Solution

147. If a man wants to hit a target, in what direction
should be ponts his rifle (higher,lower or in the
same direction as the target)?

- Watch Video Solution

148. Shows that the projection angle θ_{o} for a projectile launched from the origin is given by $\theta_{o}=\tan ^{-1}\left(\frac{4 h_{m}}{R}\right)$ where the symbols have their usual meaning.

D Watch Video Solution

149. A body is projected so that it has maxium hoizontal range R.What is the maximum height reached during the flight?
150. A particle is projected with a given velocity in two possible ways so as to make it pass through a point at a distant from the point of projection.Obtain a relation for the product of times taken to reach the point in the two possible ways.

- Watch Video Solution

151. A cyclist starts from the centre Oof a circular park of radius 1 km , reaches the edge P of the park,
then cycles along the circumference, and returns to the centre along QO as shown in Fig. 4.21. If the
round trip takes 10 min , what is the:- net displacement,

- Watch Video Solution

152. A cyclist starts from the centre Oof a circular park of radius 1 km , reaches the edge P of the park,
then cycles along the circumference, and returns
to the centre along QO as shown in Fig. 4.21. If the round trip takes 10 min , what is the:- average velocity, and

D Watch Video Solution

153. A cyclist starts from the centre Oof a circular

 park of radius 1 km , reaches the edge P of the park, then cycles along the circumference, and returns to the centre along QO as shown in Fig. 4.21. If the round trip takes 10 min , what is the:- average speed of the cyclist?
154. On an open ground, a motorist follows a track
that turns to his left by an angle of 60° after every

500 m . Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

D Watch Video Solution

155. A passenger arriving in a new town wishes to go from the station to a hotel located 10 km away on a straight road from the station. A dishonest
cabman takes him along a circuitous path 23 km long and reaches the hotel in 28 min . What is:- the average speed of the taxi,

D Watch Video Solution

156. A passenger arriving in a new town wishes to go from the station to a hotel located 10 km away on a straight road from the station. A dishonest
cabman takes him along a circuitous path 23 km long and reaches the hotel in 28 min . What is:- the magnitude of average velocity ? Are the two equal ?

- Watch Video Solution

157. Tire ceiling of a long hall is 25 m high. What is the maximum horizontal distance that a ball thrown with a speed of $40 \mathrm{~ms}^{-1}$ can go without hitting the ceiling of the hall ?

- Watch Video Solution

158. A cricketer can throw a ball to a maximum horizontal distance of 100 m . How much high above the ground can the cricketer throw the same ball ?

D Watch Video Solution

159. A stone tied to the end of a string 80 cnr long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 25 s , what is the magnitude and direction of acceleration of the stone?
160. An aircraft executes a horizontal loop of radius 1.00 knr with a steady speed of $900 \mathrm{~km} / \mathrm{h}$.

Compare its centripetal acceleration with the acceleration due to gravity.

D Watch Video Solution

161. A bullet fired at an angle of 30° with the horizontal hits the ground 3.0 km away. By adjusting its angle of projection, can one hope to
hit a target 5.0 km away ? Assume the muzzle speed to be fixed, and neglect air resistance.

D Watch Video Solution

162. Distinguish between speed and velocity.

- Watch Video Solution

163. What do you understand by relative velocity?

- Watch Video Solution

