©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JBD PUBLICATION

LAWS OF MOTION

Exercise

1. State if each of the following statements is
true or false. Give reasons for your answer:- In
an elastic collision of two bodies, the
momentum and energy of each body is conserved.
A. Both momentum and K.E. ar conserved
B. Both momentum and K.E. are not conserved
C. Momentum is conserved and K.E. is not
conserved
D. Momentum is not conserved and K.E. is
conserved
2. The following particles are moving with the same velocity.The particle with maximum momentum is:
A. β-particle
B. Proton
C. α-particle
D. Neutron
3. A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time tis proportional to
A. $\frac{t^{1}}{2}$
B. t
C. $\frac{t^{3}}{2}$
D. t^{2}.

- Watch Video Solution

4. During inelastic collision between two bodies, which of the following quantities always remain conserved?
A. Kinetic Enery only
B. Momentum only
C. Both Kinetic Energy and Momentum
D. None of the above.

- Watch Video Solution

5. One end of a string of length t is connected to a particle of mass m and the other to a small peg on a smooth horizontal table. If the particle moves in a circle with speed v the net force on the particle (directed towards the centre) is : T is the tension in the string. [Choose the correct alternative].
A. T
B. $t T-\frac{m v^{2}}{l}$
C. $t+\frac{m v^{2}}{l}$
D. 0

Answer:

D Watch Video Solution

6. Three blocks A, B and C weighing $1 \mathrm{~kg}, 8 \mathrm{~kg}$, and 27 kg respectively are connected a shown in the figure with inextensible string and are

moving on smooth surface.If $\mathrm{F}=36 \mathrm{~N}$,then T is :

A. 18 N
B. 9 N
C. 27 N
D. 3 N

Answer:

7. The linear momentum of a body varies with time as $p=\alpha+\beta t^{2}$ where α and β are constants. The net force acting on the body is proportional to :
A. t^{2}
B. t
C. l / t^{2}
D. l / t.

Answer:
8. Two bodies with masses m_{1} and m_{2},
$\left(m_{1}>m_{2}\right)$ are joined by a massless string passing over a fixed pulley.The downward acceleration of mass m_{1} is :
A. $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$
B. $\frac{m_{1} g}{m_{1}+m_{2}}$
C. $\frac{m_{2} g}{\left(m_{1}+m_{2}\right)}$
D. $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$.

Answer:

9. Rocket works on the principle of conservatin

 of:A. mass
B. linear momentum
C. angular momentum
D. energy

Answer:
10. A machine gun of mass M fires n bullets per second .The mass and speed of each bullet is m and v respectively. Then force exerted on the machine gun is :
A. zero
B. $m v n$
C. Mvn
D. Mvnlm

Answer:

D Watch Video Solution

11. A rope of length L is pulled with a constant
force F.The tension T in the rope at u point at distance x from the end where the force is applied, is :
A. $\frac{F L}{x}$
B. $\frac{F L}{L-x}$
C. $\frac{f(l-x)}{L}$

$$
\text { D. } \frac{F-x}{L-x} \text {. }
$$

Answer:

D Watch Video Solution

12. A small body of mass m slides down from
the top of a frictionless hemispherical surface
of radius r as shown in the figure.The vertical height h below the highest point at which the
body gets separated from the hemispherical
surface.

A. $r / 3$
B. $2 r / 3$
C. $3 r$
D. $2 r$.

Answer:

13. A cyclist is moving on a circular track of radius 80 m with a velocity of $72 \mathrm{~km} / \mathrm{h}$. He leans from the direction through an angle of:
A. $\tan ^{-1}(1 / 2)$
B. $\tan ^{-1}(1 / 4)$
C. $\tan ^{-1}(1)$
D. $\tan ^{-1}(20$
14. During motion in the vertical circle, what is
the difference in tension at the top and bottom of the circle?
A. 6 mg
B. 4 mg
C. 2 mg
D. zero
15. the ratio of angular speed of minute hand and hour hand of a clock is :
A. $1: 12$
B. 6:1
C. 12:1
D. 1:6.

Answer:
16. Two particles of equal masses are revolving
in circular paths of radii r_{1} and r_{2} respectively with the same time period. The ratio fo the centripetal force is :
A. r_{1} / r_{2}
B. $\left(r_{1} / r_{2}\right)^{2}$
C. r_{2} / r_{2}
D. $\left(r_{2} / r_{1}\right)^{2}$.

Answer:

- Watch Video Solution

17. A block is in limiting equilibrium on an inclined plane of angle theeta ,Then ,the coefficient of friction is :
A. $\sin \theta$
B. $\cos \theta$
C. $\tan \theta$
D. $\cot \theta$.

Answer:

D Watch Video Solution

18. The ratio of interial mass to gravitational mass is :
A. $1: 1$
B. 1:2
C. $2: 1$
D. zero

Answer:

D Watch Video Solution

19. A 50 kg man is standing on a flat boat at
rest in a river.He moves 5 m to north and
halts.If the boat has a mass of 450 kg ,then the boat will moves through a distance :
A. $0.5 m$ to the south
B. ${ }^{`}(5 / / 9) m$ to the south
C. $\odot 5 \mathrm{~m}$ to the north

D. zero

Answer:

D Watch Video Solution

20. With what minimum acceleration can a
fireman slide down a rope whose breaking
strength is $\frac{2}{3} r d$ of his weight?

$$
\begin{aligned}
& \text { A. } \frac{2}{3} r d \\
& \text { B. } \frac{1}{3} g
\end{aligned}
$$

C. g
D. $2 g$.

Answer:

D Watch Video Solution

21. Cream gets separated out of milk when it is
churved ,it is due to :
A. centripetal force
B. gravitational force

C. centrifugal force

D. frictional force.

Answer:

D Watch Video Solution

22. A gramophone record is revolving with an angular speed .A coin is placed at a distance r
from the centre of the record.RThe coefficient of static friction is u.the coin will revolve with the record if :
A. $r>\mu g / \omega$
B. $r \leq \mu g / \omega^{2}$
C. $r>\mu / \omega$
D. $\mu>u g / \omega$.

Answer:

D Watch Video Solution

23. Pseudoforce is a force that exists in :
A. an inertial frame of reference

B. non-inertial frame of refernce

C. both inertial and non-inertial frames
D. None of the above.

Answer:

D Watch Video Solution

24. For a particle moving in vertical circle,the:
A. Kinetic energy is constnt
B. Potential Energy is costant

C. both Kinetic Energy and Potential Energy

are constant
D. neither Kinetic Energy nor Potential

Energy is constant.

Answer:

D Watch Video Solution

25. A man sitting in a train which is in motion is facing the engine. He tosses a coin up. the coin falls behind him. The train is :
A. moving forward and gaining speed
B. moving forward and losing speed
C. moving forward with uniform speed
D. moing backward with uniform speed.

Answer:

D Watch Video Solution
26. Which of the following statements is false?
A. A body can have zero velocity and still be accelerated.
B. A body ca have a constant velocity and
still have a varying speed.
C. A body can have a costant speed and stil
hae a aryig velocity.
D. The direction of the velocity of a body
can change when its acceleration is
constant.
27. Essential characteristic of equilibrium is :
A. momentum equal to zero

B. acceleration equa to zero

C. kinetic energy equal to zero
D. None of the above.

Answer:

28. The resultant of two forces is 20 N.When one of the forces is $20 \sqrt{3} N$ and angle between two forces is 150°, then what is the value of second force?
A. 10 N
B. 20 N
C. $20 \sqrt{3} N$
D. $10 \sqrt{3} N$

29. A car when passes through a convex bridge

 exert a force on it which is equal to :A. $M g-\frac{M v^{2}}{r}$
B. $\frac{M v^{2}}{r}$
C. mg
D. None of the above.

Answer:

30. The triangular block is moving on a frictionless surface with $3 m / s^{2}$ towards right
such that the mass m does not slide on the tiangular block.Find the coefficient of friction between mass m and the block.

Fig.
A. 0.25
B. 0.31
C. 0.41
D. 0.2

Answer:

D Watch Video Solution

31. A mass M of 100 kg is suspended with the use of strings A, B and C as shown in the figure, where W is the vertical wall and R is a rigid horizontal rod.The tension in the sttring

B is :

Fig.
A. 100 g
B. 0
C. $100 \sqrt{2}$
D. $\frac{100}{\sqrt{2}} g$.

Answer:

- Watch Video Solution

32. Three blocks of masses m_{1}, m_{2} and m_{3} are connected by massless strings on a frictionless table.They are pulled with a force

$$
T_{3}=40 \mathrm{~N} . \mathrm{If} \quad m_{1}=10 \mathrm{~kg}, m_{2}=6 \mathrm{~kg} \quad \text { and }
$$

$m_{3}=4 \mathrm{~kg}$. th tension T_{2} will be :

Fig.
A. 20 N
B. 40 N

C. 10 N

D. 32 N

Answer:

- Watch Video Solution

33. If momentum is increased by 20%,then
K.E.increases by :
A. 0.44
B. 0.55

C. 66

D. 77

Answer:

D Watch Video Solution

34. A bullet $\left(m_{1}=25 g\right)$ fired with a velocity of
$400 \mathrm{~m} / \mathrm{s}$ gets embedded into a bag of sand
($m_{2}=4.975 \mathrm{~kg}$) suspended by a rope.The velocity gained by the bag is nearly:
A. $0.2 m / s$
B. $8 m / s$
C. $4 m / s$
D. $2 m / s$.

Answer:

D Watch Video Solution

35. Three equal weights of mass 2 kg each are hangning os string passing over a fixed pulley as shown in fig.What is the tension in the
string connectig weights B and C ?

Fig.

A. Zero
B. 13.3 N
C. 3.3 N

D. 19.6 N

Answer:

D Watch Video Solution

36. A bullet of mass a moving with a velocity b
is made to hit a target of mass c and got embedded into it .Find the velocity of the final
system.
A. $\frac{a c}{a+b}$
B. $\frac{a b}{a+c}$
C. $\frac{a b}{a-c}$
D. $\frac{a b}{a-b}$.

Answer:

- Watch Video Solution

37. A bomb of mass 1 kg is thrown vertically upwards with a speed of $100 \mathrm{~m} / \mathrm{s}$.After 5 seconds it explodes into two fragments .One
fragment of mass 400 g is found to go down
with a speed of $25 \mathrm{~m} / / \mathrm{s}$.the second fragment just after the explosion will go $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. upward with speed $40 \mathrm{~m} / \mathrm{s}$
B. upward with speed $100 \mathrm{~m} / \mathrm{s}$
C. upward with speed $60 \mathrm{~m} / \mathrm{s}$
D. downward with speed $40 \mathrm{~m} / \mathrm{s}$.

Answer:

- Watch Video Solution

1. Give one example each of position depedent force

D Watch Video Solution

2. Give one example each of
time dependent force.

- Watch Video Solution

3. Give one example each of

constant force

- Watch Video Solution

4. Give one example each of
velocity dependent force.

D Watch Video Solution
5. Does equilibrium mean that a body is at rest?

D Watch Video Solution
6. Why do we prefer a heavy hammer to drive a nail into wood?

- Watch Video Solution

7. Action and reaction forces do not balance

 each other. Why?D Watch Video Solution
8. What is the principle of working of a rocket?

D Watch Video Solution

9. What is the measure of inertia of a body?
10. A meteorite burns in the atmosphere before it reaches the earth's surface. what happens to its momentum?

D Watch Video Solution

11. What is the relation beteen coefficient fo
friction and angle of friction (ϕ) ?

D Watch Video Solution
12. What is the relation between coefficient of friction and angle of repose?

D Watch Video Solution

13. What are the methods of reducing friction?/

- Watch Video Solution

14. The angle of friction betwen two surfaces is 30°, what is coefficient of friction?

- Watch Video Solution

15. What type of friction is involved when axle rotates in a wheel?

- Watch Video Solution

16. Arrange μ_{s}, μ_{k} and μ_{r} in descending order.

- Watch Video Solution

17. We slip easily on a rainy day because coefficient of friction

- Watch Video Solution

18. Why are ruber tyres preffered to iron tyres?

- Watch Video Solution

19. Why are aeroplanes given conical shape?

D Watch Video Solution

20. Define coefficient of friction.

D Watch Video Solution
21. Can force of friction on a body be zero even
if it is placed on a rough surface?
22. At what place on earth, the centirpetal force is maximum?

- Watch Video Solution

23. Write an expression for the centripetal force.

D Watch Video Solution
24. Write an expression for the centripetal acceleration.

D Watch Video Solution

25. What is the acceleration of a train
travelling at $40 \mathrm{~ms}^{-1}$ as it goes round a cuve
of 160 m radius?

- Watch Video Solution

26. When a bucket full of water is rotated, water does not fall from it.Why?

D Watch Video Solution

27. The Kinetic Energy of a body moving along
a horizontal circle remains same at every point
.Is it true for a vertical circle also/

D Watch Video Solution
28. When mud flies off the tyre of a bicycle, in what direction does it fly?

D Watch Video Solution

29. Name the pseudo-force which is regarded as a reaction to the centripetal force.

D Watch Video Solution

30. Write an expression for maximum velocity of a vehicle on an unbanked circular road.

D Watch Video Solution

31. Why is a curved road banked on the outer side?/
32. What is the need of banking a circular road?

- Watch Video Solution

33. State Newton's second law of motion. How
it helps us to measure force ? State its CGS and SI units.

D Watch Video Solution
34. Is the tension in a string on either side of a pulley the same throughout its length ?if yes,under what condition?

D Watch Video Solution

35. Can we predict the direction of motion of a body for the direction of the force acting on it ?Explain.
36. A bird is in a wire cage hanging from a spring balance.Is the reading indicated on the balance,when the bird is flying out in the cage greater than ,less than or the same as that when the bird is sitting in the cage ?Explain.

- Watch Video Solution

37. Why does a gun(when fired)given a greater
'kick' when the butt ,is held loosely against shoulder than when held tightly?
38. define SI unit of force.

- Watch Video Solution

39. Is weight of a body scalar or vector ?

D Watch Video Solution

40. What is the concept of inertia mass?
41. Are Newton's first law of motion and Galileo's law on inertia different?

D Watch Video Solution

42. A person sitting in the comprtment of a train moving with the force at an angle of 120° w.r.t velocity vector .what is the angle between the impulse vector and change in momentum vector?

Watch Video Solution

43. For a spring,what will be the graph between
force and extension

- Watch Video Solution

44. For a spring,what will be the graph between
potential energy stored and extension?

D Watch Video Solution
45. What is an impulse? How is it related to
the change in momentum?

D Watch Video Solution

46. On what factors the thrust of a rocket may depend?
47. What do Newton's laws of motion tell about force?

- Watch Video Solution

48. Show that $1 N=10^{5}$ dyne.

D Watch Video Solution

49. What are action -reaction pairs in the following cases

A person swimmin in water

D Watch Video Solution

50. What are action -reaction pairs in the following cases

A horse pulling a cart?

D Watch Video Solution

51. Is earth an inertial frame of reference?

D Watch Video Solution
52. When a ball is thrown upwards, its momentum first decreases and then increases.

Is conservation of linear momentum violated in this process?

D Watch Video Solution

53. A person mass M is hanging from rope fastened to a stationary balloon mass m . and if the person climbs along the rope then with
what velocity the balloon will move and in what direction?

D Watch Video Solution

54. Two persons having the same mass are standing on ice-skates some distance apart on
a frictionless surface.a rope is fastened around
the body of a person,the other end of which si in the hand of the second person.What would happen if the second person pulls the rope?
55. Two stones of different sizes are dropped simultaneously from the top of a bulding. Which stone would reach the ground earlier?

D Watch Video Solution

56. A constant force acting on a body of mass
3.0 kg changes its speed from $2.0 \mathrm{~ms}^{-1}$ to
$3.5 \mathrm{~ms}^{-1}$ in 25 s . The direction of the motion
of the body remains unchanged. What is the magnitude and direction of the force?

D Watch Video Solution

57. Coefficient of friction depends on

D Watch Video Solution

58. Friction is a self- adjusting force. Is it correct?
59. How does coefficient of friction is altered when the weight of body is doubled?

- Watch Video Solution

60. A cube is resting on an inclined plane and
the angle fo inclination is gradually increased.For what angles will the cube slide before toppling?
61. A cube is resting on an inclined plane and
the angle fo inclination is gradually increased.For what angles will the cube slide before toppling?

D Watch Video Solution
62. Is force of friction always given as $f=\mu R$?
63. Determine the maximum acceleration of
the train in which a box lying on its floor will remain stationary. Given that the coefficient of static friction between the box and train's floor is 0.16 .

- Watch Video Solution

64. A mass of 4 kg rests on a horizontal plane.

The plane is gradually inclined at an angle
$\theta=15^{\circ}$ with the horizontal, the mass just
begins to slide. What is the coefficient of static

friction between the block and the surface?

- Watch Video Solution

65. State whether the following statement is true or false-"When a person walks on a rough surface,the frictional force exerted by the surface on the person is opposite to the direction of his motion".
66. Polishing beyond certain limit may increase friction between the surfaces. Explain.

D Watch Video Solution

67. When brakes are applied in a car,the brake-
shoes apply frictional force on the
wheels.these forces are internal for the
system(car).For retardation,external forces ust act on the system. The force of friction at the road surface remains the same before and
after teh brakes are applied $(f=\mu N)$.How does the car stop?

D Watch Video Solution

68. Why is it difficult to walk on sand?

D Watch Video Solution

69. Automobile tyres have generally irregular projections over their surfaces. Why?
70. Sand is thrown on trakcs covered with snow to

- Watch Video Solution

71. How can we save petrol by properly inflating the tyres of vehicles ?Explain.

72. Why are tyres made circular?

- Watch Video Solution

73. Is a large brake on a bicycle wheel more effective than small one ? Explain.

D Watch Video Solution

74. Arrange coefficient of limitin friction $\left(\mu_{1}\right)$
,coefficient of kinetic friction $\left(\mu_{k}\right)$ and
coefficient of rolling ffriction $\left(\mu_{r}\right)$ in scending order.

D Watch Video Solution
75. It is difficult to start motion than to maintain it .Explain.

- Watch Video Solution

76. If angle of friction is 30°, calculate the coefficient of friction.
77. A force of 50 kg is requird to pull a roller weighing 500 kg over ice.What is ceofficient of friction?

- Watch Video Solution

78. A force of 3 kg weight is just sufficient to
pull a block of 4 kg over a horizontal surface.What is the angle of friction?

Watch Video Solution

79. A cubical block rests on an inclined plane with four edges horizontal.lf $\mu=\frac{1}{\sqrt{3}}$ determine the angle when the block just slides down the plane.

- Watch Video Solution

80. An automobile is moving on a horizontal road with a speed of v.lf teh coeficient of friction between the tyres nd the road is μ
,show that the shortest distance in whih the automobie can be stopped is $v^{2} l 2 \mu g$.

D Watch Video Solution

81. A suitcase us gently dropped on a coneyor belt moving at $3 \mathrm{~m} /$.If th coefficientt of friction between the belt and the surface is 0.5 ,how far will the suitcase move on the belt before coming to rest?
82. A motor car running at the rate of $7 \mathrm{~m} \mathrm{~s}^{\wedge}-1^{`}$
can be stopped by its brakes in 10m.Prove that total resistance to the motion when braeks are on is one-fourth of the weight of the car.

D Watch Video Solution

83. A 4 kg block A is placed onn 8 kg block B
which rests on a smooth table,A just slips on
when a force of 12 N is applied on A.What is
the maximum horizontal force ,F required to make bothy A and B move together?
84. A body weighing 20 kg just slides down a rough inclined plane that rises 5 m in every 12 m What is the coefficeint of friction?

- Watch Video Solution

85. Why are mountain roads generally made winding upwards rather than going straight up?

Watch Video Solution

86. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed $6 m s^{-1}$ collide and rebound with the same speed. What is the impulse imparted to each ball due to the other?

- Watch Video Solution

87. A nucleus is at rest in the laboratory frame of reference. Show that if it disintegrates into
two smaller nuclei the products must move in opposite directions.

- Watch Video Solution

88. What provides the centripetal force in the
following cases
electron revolving around the nucleus

- Watch Video Solution

89. What provides the centripetal force in the following cases
earth revolving around the sun

D Watch Video Solution

90. What provides the centripetal force in the
following cases
car taking a turn?

D Watch Video Solution

91. A particle has a uniform circular motion .Is

 work is being done on the particle?
D Watch Video Solution

92. If both the speed of the body and the radius of its circular path are doubled ,what will happen to the centripetal force?

- Watch Video Solution

93. A gramophone disc rotates at 60 revolutions per minute. A coin of mass 13 g is placed at the disc at a distance of 8.0 cm from the centre. Calculate centrifugal force on the coin.

D Watch Video Solution

94. A body of mass 0.8 kg is whirled uniformlyt at the end of a string 2 m long.If teh string
makes 3 revolutins in 1.5 sec, calculate the tension in the string.

D Watch Video Solution

95. A bend in a level road has radius of 100 m.Find the maximum speed with which a car turning this bend may have without skidding ,if the coefficient of friction between the tyres and road is 0.8 .
96. Calculate the angle through which the cyclist bends with the vertical when he crosses
a circular path 34.3 m in circumference in $\sqrt{22}$ second.

- Watch Video Solution

97. A cyclist goes round a circular path of radius 20.0 m with a speed of $14 \mathrm{~m}^{-1}$. Find the angle through which his cycle makes with vertical. $\left(g=9.8 m s^{-2}\right)$.
98. A cyclist speeding at $18 k m h^{-1}$ on a level road makes a sharp circular turn of radius 3 m
without reducing the speed. The coefficient of
static friction between the tyres and the road is 0.1 will the cyclist slip while taking the turn?

- Watch Video Solution

99. A motorcyclist loops the loop of radius 8 m.From what minimum height must he start in
order to roll down and go around the loop?

D Watch Video Solution

100. A 100 g mass is going in a vertical circle of
rdius 1 m .What is the minimum speed that mass will reach at the top of the circle ? what is
is speed at the bottom of circle?

- Watch Video Solution

101. A small stone of mass 200 g is tied to one end of a string of length 80 cm . Holding the other end in hand, the stone is whirled into a vertical circle What is the minimum speed that needs to be imparted at the lowest point of the circular path , so that the stone is just able to complete the vertical circle ? what would be the tension at the lowest point of circular path ? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$).
102. During motion in the vertical circle, what is the difference in tension at the top and bottom of the circle?

D Watch Video Solution

103. What must be the minimum speed of the body at the lowest point ,so that it may complete the vertical circle?

D Watch Video Solution
104. You may have seen in a circus a motorcyclist driving in vertical loops inside a
'death- well' (a hollow spherical chamber with
holes, so the spectators can watch from outside). Explain clearly why the motorcyclist does not drop down when he is at the uppermost point, with no support from below.

What is the minimum speed required at the
uppermost position to perform a vertical loop
if the radius of the chamber is 25 m ?
105. Why does a child in a merry - go - round press the side of his seat rdially outward?

D Watch Video Solution

106. Why does a cyclist lean to one side while going along a curve? In which direction does he lean?

D Watch Video Solution

107. Why does the total energy remain constant during motion in a vertical circle?

D Watch Video Solution

108. Does the kinetic enregy of a body remain constant during motion in a vertical circle?

D Watch Video Solution

109. A body is moving on a curved path with a constant speed.What is the nature of its acceleration?

D Watch Video Solution

110. For uniform circular motion, does the
direction of the centripetal force depend on th
sense of rotation clockwise or anti-clockwise)?

D Watch Video Solution
111. What happens to a stone tied to the end of a string and whirled in a circle if the string suddenly breaks?

- Watch Video Solution

112. When a bus suddenly takes a turn, the passengers are thrown outward, because of :

D Watch Video Solution

113. When centripetal force acts on a body towards centre of the circle,why does the body not move towards the centre?

D Watch Video Solution

114. Can centripetal force produce rotation?

- Watch Video Solution

115. Why is a curved road banked on the outer side?/

D Watch Video Solution

116. A gramophone disc rotates at 60 revolutions per minute. A coin of mass 13 g is placed at the disc at a distance of 8.0 cm from
the centre. Calculate centrifugal force on the coin.
117. A particle of mass 14 g attached to a string
of 70 cm long is rotated in horizontal circle. If
the period of revolution is 2 sec , find the tension in the string.

- Watch Video Solution

118. A ball of 0.03 m diameter and 0.3 kg in
weight is attached to the end of a thin string
of 0.46 m length. If it is rotate uniformly in a
horizontal circle at the rate of 15 revolutions
per second, what is the tension in the string?
Take $\pi^{2}=9.87$).

D Watch Video Solution

119. A particle of mass 1 kg is whirled uniformly at the end of a string 2 m long.If the string makes 3 revolutins in 1.2 sec., find the tension in the string.
120. A ball weighing 5 kg is being rotated by means of a cord 2 m long.if its velocity is $6 m s^{-1}$,find the force that tends to break the cord.

D Watch Video Solution

121. An aeroplane travelling at a speed of $500 \mathrm{kmh}^{-1}$ banks at an angle of 30° as it makes a turn .What is the radius of the curve?
122. An aircraft executes a horizontal loop at a speed of $720 \mathrm{~km} / \mathrm{h}$ with its wings banked at 15°. What is the radius of the loop?

- Watch Video Solution

123. The radius of curvature of a railway line at
a place is 40000 m.the train is running at $20 \mathrm{~ms}^{-1}$.the distance between the two rails is
1.5 m.Find the elevation of the outer rail over
the inner one so that the train may be able to run safely.

D Watch Video Solution

124. A cyclist goes round a circular path of radius 20.0 m with a speed of 14 m s . . Find
the angle through which his cycle makes with
vertical. $\left(g=9.8 m s^{-2}\right)$.

D Watch Video Solution
125. A cyclist going at a speed of $24 \mathrm{kmh}^{-1}$,takes a turn of 6.70 m radius .Find the inclination of his cycle to vertical.

- Watch Video Solution

126. A cyclist goes round a circular path of radius 20.0 m with a speed of $14 \mathrm{~m}^{-1}$.Find the angle through which his cycle makes with vertical. $\left(g=9.8 m s^{-2}\right)$.
127. What is the relation between coefficient of friction and angle of repose?

- Watch Video Solution

128. Why is limiting friction greater than kinetic friction?

- Watch Video Solution

129. What are the methods of reducing friction?/

D Watch Video Solution
130. The angle of friction betwen two surfaces
is 30°,what is coefficient of friction?

D Watch Video Solution
131. Arrange μ_{s}, μ_{k} and μ_{r} in descending order.

D Watch Video Solution
132. Prove: the impulse: momentum theorem.

D Watch Video Solution

133. A bullet of mass 0.04 kg moving with a
speed of $90 \mathrm{~ms}^{-1}$ enters a heavy wooden
block and is stopped after a distance of 60 cm .

What is the average resistive force exerted by the block on the bullet?

D Watch Video Solution

134. A batsman hits back a ball straight in the
direction of the bowler without changing its
speed of $12 \mathrm{~ms}^{-1}$. If the mass of the ball is 0.15
kg , determine the impulse imparted to the ball.
135. Three equal weights of mass 2 kg each are hangning os string passing over a fixed pulley as shown in fig.What is the tension in the string connectig weights B and C ?

Fig.
136. Two bodies of masses m_{1} and m_{2} are connected byh a ight string passing over a smooth light pulley fixed at the end of an inclined plane.the mass m_{1} lies on the inclined plne nd m_{2} bags vertically.The system is at rest.Find the angle of the inclination of the inclined plane and the force exerted by the inclined plane on the body of mass m_{1}.
137. Can a sailing boat be propelled by air blown at the sails from a fan attached to the boat?Explain.

- Watch Video Solution

138. A fast moving bullet when hits the window pane makes a round hole while a stone strikes and shatters it, why ?

D Watch Video Solution

139. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 m s^{-1}$. How long does the body take to stop ?

- Watch Video Solution

140. Deduce the relation between torque and moment of inertia.
141. A body of mass m moves in a circular path of radius r with a velocity v. Find the expression for the centripetal force F acting on the body by using method of dimensions.

- Watch Video Solution

142. When walkin on ice,is it better to take short or long steps?Explain.

- Watch Video Solution

143. What are the methods of reducing friction?/

D Watch Video Solution
144. A train of 150 metre ton is drawn up a rough inelined plane of 1 in 100 at the rate of

36 km . if the frictional force is 12 N ton ${ }^{\wedge}-1$
,calculate the power of the engine.

D Watch Video Solution
145. A train weghing 1000 quintals is running on a level road ith a uniform speed of 72 $k m / h$.If teh frictional resistance amounts to 50 g wt.per quintal,find power in watt,take $g=9.8 m s^{-2}$.

- Watch Video Solution

146. A block slides down an inclined plane of slope angle 0 with constant velocity .lt is then projected up the same plane with an initial velocity v_{0}.How far up the incline will it move?

- Watch Video Solution

147. A railway engine weghing 40 metric ton is travelling along a level track at a speed of $54 \mathrm{~km} / \mathrm{h}$. What additional power is required to maintain the same speed up an incline rising 1 in 49 ,given $\mu=0.1, g=9.8 \mathrm{~ms}^{-2}$?
148. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N . Give the magnitude and direction of the acceleration of the body.

D Watch Video Solution

149. A body of mass 0.40 kg moving initially with a constant speed of $10 \mathrm{~ms}^{-1}$ to the north is subject to a constant force of 8.0 N directed towards the south for 30 s . Take the instant
the force is applied to be $t=0$, the position of
the body at that time to be $x=0$, and predict
its position at $\mathrm{t}=-5 \mathrm{~s}, 25 \mathrm{~s}, 100 \mathrm{~s}$.

D Watch Video Solution

150. Explain why a centrifugal force is not a reaction of centripetal force.

D Watch Video Solution

151. Why does a cyclist lean to one side while going along a curve? In which direction does
he lean?

D Watch Video Solution

152. What do you mean by banking of road?

D Watch Video Solution
153. Derive an expression for the angle of bending of a cyclist on a curved track.

D Watch Video Solution

154. A stone of mass 0.25 kg tied to the end of
a string is whirled round in a circle of radius
1.5 m with a speed of $40 \mathrm{rev} . / \mathrm{min}$ in a
horizontal plane. What is the tension in the string ? What is the maximum speed with which the stone can be whirled around if the
string can withstand a maximum tension of 200 N ?

D Watch Video Solution

155. If, in Exercise 5.21, the speed of the stone is increased beyond the maximum permissible value, and the string breaks suddenly, which of the following correctly describes the trajectory of the stone after the string breaks :- the stone moves radially outwards.
156. If, in Exercise 5.21, the speed of the stone
is increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory
of the stone after the string breaks :- the stone flies off tangentially from the instant the string breaks.

D Watch Video Solution

157. If, in Exercise 5.21, the speed of the stone
is increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory
of the stone after the string breaks :- the stone flies off at an angle with the tangent whose magnitude depends on the speed of the particle ?

Watch Video Solution

158. What is centripetal force?

D Watch Video Solution

159. Define centrifugal force.

D Watch Video Solution
160. Find the expression for velocity at highest point in a vertical circle.
161. A bucket containing water is tied to a rope of length 2.5 m and rotated in a vertical circle in wuch a way that the winter in it does not spill,what is the minimum velocity of the bucket at which this happens and how many rotations per minutes is it making then?(Take $g=10 m s^{-2}$).

D Watch Video Solution

162. The radius of curvature of a railway track at a place where the train is moving at a speed of $72 \mathrm{kmh}^{-1}$ is 625 m .The distance between
the rails is 1.5 m . Find the angle and the elevation of the outer rail so that there may be no side pressure on the rails. $\left(g=9.8 m s^{-2}\right)$.
163. The stone of mass 100 g is suspended
from the end of a weightless string of length

100 cm and is allowed to swing in a vertical
plane.The speed of the mass is $2 m s^{-1}$ when
the string makes an angle of 60° with the
vertical .Calculate the tension in the string at
$\theta=60^{\circ}$.Also,caculate the speed of the stone
when it is in the lowest poition.
$\left(g=9.8 m s^{-2}\right)$.

- Watch Video Solution

164. A body weighing 0.4 kg is whirled in a vertical circle making 2 revolutions per second

If the radius of the circole is 1.2 m ,fing the tension in the sting when the body is (a) at thge top of the circle .(b) at the bottom of the circle.

D Watch Video Solution

165. A small stone, of mass 0.2 kg , tied to a massless, inextensible string, is rotated in vertical circle of radius 2 m . if the particle is
just able to complete the vertical circle, what
is its speed at the highest point of its circular path? How would this speed get effected if the mass of the stone is increased by 50% ? (Take $g=10 \mathrm{~ms}^{-2}$)

- Watch Video Solution

166. A massless string of length 1.2 m , has a breaking strength of $2 \mathrm{~kg} w \mathrm{wt}$. A stone of mass
0.4 kg , tied to one end of the string, is made to move in a vertical circle, by holding the
other end in the hand. Can the particle describe the vertical circle? (Take $g=10 \mathrm{~ms}^{-2}$
)

D Watch Video Solution

167. A particle of mass 150 g is attached to one end of a massless inextensible string it is made to describe a vertical circle of radius 1 m

When the string is making an angle of 48.2°
with the vertical, its instantaneous speed is 2
$\mathrm{m} / / \mathrm{s}$ What is the tension in the string in this
position ? Would this particle be able to complte its circular path?(Take $g=10 \mathrm{~ms}^{-2}$).

D Watch Video Solution

168. A bucket containing water is tied to a rope of length 2.5 m and rotated in a vertical circle in wuch a way that the winter in it does not spill,what is the minimum velocity of the bucket at which this happens and how many rotations per minutes is it making then?(Take $g=10 m s^{-2}$).
