

PHYSICS

BOOKS - JBD PUBLICATION

Model Test Paper 14

Exercise

1. Impulse of force is measured in:

A. N

B. Ns	
C. Joule	
D. Watt	
Answer:	
Watch Video Solution	
2. Light year is the unit of	
Watch Video Solution	

3. The distance travelled by a moving object/particle cannot be

Watch Video Solution

4. Power is given by the relation, P= $\overrightarrow{F} \times \overrightarrow{V}$. (yes / no)

5. Write the unit of angular momentum.

6. What do you mean by thermal equilibrium?

Define zerothe law of thermodynamics and deduce the definitio o ftemperature from it.

Watch Video Solution

7. What is an overton?

8. If one of the rectangular components of 100

N is 50 N, calculte the other component.

Watch Video Solution

9. What is force of limiting friction and sliding friction?

10. What is elastic collision? State the necessary conditions for it.

Watch Video Solution

11. Define radius of gyration.

Watch Video Solution

12. What is the value of escape velocity on a planet whose mass is 4 times and radius is

half of earth? For earth escape velocity = $11.2kms^{-1}$?

Watch Video Solution

13. The tensile strength of steel is $5 imes 10^7 Nm^{-2}.$ Find the maximum length of the wire that can hang vertically, without breking it. Densityof steel is '8 xx 10³ kg m⁻³.

14. What are the limitations of dimensional analysis?

Watch Video Solution

15. Mention three conservation laws of mechanics.

16. When a projectile os projected at an angle with the horizontal, find the angle of projection for its maximum horizontal range and find the correspond height achieved by the projectile?

Watch Video Solution

17. A body travels 4 m in 3rd second 12 m in 5th second. Of the motion of the body is

uniformaly accelerated , then how much distance will it travel in the next 3 seconds?

18. What are the methods of reducing friction?/

19. A machine gun of mass 20 kg fires 35 gram bullet at the rate of 50 bullets per second with

a speed of 400 ms^{-1} . What force must be applied to the gun to keep it in position?

20. State and prove work energy theorem.

21. Derive Newton's law of gravitation from Kepler's law.

22. Define surface tension.

Watch Video Solution

23. The sound of explosion on the moon cannot be heart on earth, why?

Watch Video Solution

24. State Doppler's Effect.

25. State the characteristics of wave motion.

Watch Video Solution

26. Name the cgs and SI unit of coefficient of viscosity .What is the relation between them?

27. Define stress and strain. Also describe briefly the types of stress and strain.

Watch Video Solution

28. What is covection of heat transmission?

Watch Video Solution

29. Find a relation between co-efficient of linear expansion and co-efficient of cubical

expanstion of a solid.

Watch Video Solution

30. Define a rigid body.

Watch Video Solution

31. Drive the equations of rotatory motion, $\omega^2-\omega_0^2=2lpha heta$ and $heta=\omega_0^t+rac{1}{2}lpha t^2$, where every letter has its usual meaning.

32. Define moment of inertia

Watch Video Solution

33. Define the theorem of parallel axes and apply it to find the moment of inertia of a uniform rod about an axis passing through one of its ends and perpendicular to its length.

