

MATHS

BOOKS - PSEB

LIMITS AND DERIVATIVES

Exercise

1. Evaluate the following limits:- $\lim_{x o 3} x + 3$

2. Evaluate the following limits:-
$$\lim_{x o \pi} \left(x - rac{22}{7}
ight)$$

3. Evaluate the following limits:- $\lim_{r o 1} \, \pi r^2$

4. Evaluate the following limits:- $\lim_{x o 4} rac{4x+3}{x-2}$

5. Evaluate the following limits:-

$$\lim_{x
ightarrow-1} \, rac{x^{10}+x^5+1}{x-1}$$

Watch Video Solution

6. Evaluate the following limits:-

$$\lim_{x
ightarrow 0} rac{\left(x+1
ight)^5-1}{x}$$

$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4}$$

7. Evaluate the following limits:-

8. Evaluate the following limits:-

 $\lim_{x o 3} \ rac{x^4 - 81}{2x^2 - 5x - 3}$

Watch Video Solution

9. Evaluate the following limits:- $\lim_{x o 0} \ \frac{ax+b}{cx+1}$

10. Evaluate the following limits:-
$$\lim_{z \to 1} \frac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}$$

11. Evaluate the following limits:-

$$\lim_{x o 1} rac{ax^2+bx+c}{cx^2+bx+a}, a+b+c
eq 0$$

$$\lim_{x o -2} rac{rac{1}{x}+rac{1}{2}}{x+2}$$

- **13.** Evaluate the following limits:- $\lim_{x \to 0} \frac{\sin ax}{bx}$
 - Watch Video Solution

14. Evaluate the following limits:-
$$\lim_{x o 0} \frac{\sin ax}{\sin bx}, \, a, \, b
eq 0$$

15. Evaluate the following limits:-

$$\lim_{x o\pi} \ rac{\sin(\pi-x)}{\pi(\pi-x)}$$

16. Evaluate the following limits: $\lim_{x\to 0} \frac{\cos x}{\pi - x}$

17. Evaluate the following limits:-
$$\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}$$

18. Evaluate the following limits: $ax + x \cos x$ $b\sin x$ $x \rightarrow 0$

Watch Video Solution

19. Evaluate the following limits:- $\lim_{x \to \infty} x \sec x$ $x \rightarrow 0$

$$\lim_{x o 0} \ rac{\sin ax + bx}{ax + \sin bx} a, b, a+b
eq 0$$

21. Evaluate the following limits:-

$$\lim_{x \to 0} (\cos ecx - \cot x)$$

$$\lim_{x o rac{\pi}{2}} \; rac{ an 2x}{x - rac{\pi}{2}}$$

23. Find $\lim_{x o 0} f(x)$ and $\lim_{x o 1} f(x)$, where $f(x) = \left\{ egin{array}{ll} 2x+3 & x \leq 0 \\ 3(x+1) & x > 0 \end{array}
ight.$

$$f(x) = \left\{egin{array}{ll} 2x+3 & x \leq 0 \ 3(x+1) & x > 0 \end{array}
ight.$$

24. Find
$$\lim_{x \to 1} f(x)$$

$$\lim_{x \to 1}$$

where

$$f(x) = \left\{ egin{array}{ll} x^2 - 1 & x \leq 1 \ -x^2 - 1 & x > 1 \end{array}
ight.$$

Watch Video Solution

25. Evaluate $\lim_{x \to 0} f(x)$,

where

$$f(x) = \left\{ egin{array}{ll} rac{|x|}{x} & x
eq 0 \ 0 & x = 0 \end{array}
ight.$$

26. Find
$$\lim_{x\to 0} f(x)$$
,

where

$$f(x) = \left\{ egin{array}{ll} rac{x}{|x|} & x
eq 0 \ 0 & x = 0 \end{array}
ight.$$

Watch Video Solution

27. Find $\lim_{x o 5} f(x)$, where f(x) = |x| - 5

28. Suppose
$$f(x)=\left\{egin{array}{ll} a+bx & x<1 \ 4 & x=1 \ b-ax & x>1 \end{array}
ight.$$

 $\lim_{x o 1} \, f(x) = f(1)$ what are possible values of a and b?

Watch Video Solution

29. Let $a_1, a_2 \dots a_n$ be fixed real numbers and function define a $f(x) = (x - a_1)(x - a_2)...(x - a_n).$ What is $\lim_{x o a_1} f(x)$? For some $a
eq a_1, a_2, a_n$, compute $\lim_{x \to a} f(x)$.

30. If
$$f(x)=\left\{egin{array}{ll} |x|+1 & x<0 \ 0 & x=0 \ |x|-1 & x>0 \end{array}
ight.$$

value (s) of a does $\lim_{x \to a} f(x)$ exists?

Watch Video Solution

31. If the function f(x) satisfies $\lim_{x o 1} rac{f(x)-2}{x^2-1} = \pi$, evaluate $\lim_{x o 1} f(x)$.

32. If
$$f(x)=egin{cases} mx^2+n & x<0 \ nx+m & 0\leq x\leq 1 \ nx^3+m & x>1 \end{cases}$$
 . For

what integers m and n does both $\lim_{x o 0} f(x)$

and $\lim_{x \to 1} f(x)$ exist?

Watch Video Solution

33. Find the derivative of $x^2 - 2$ at x = 10.

34. Find the derivative of 99x at x = 100.

Watch Video Solution

35. Find the derivative of x at x = 1.

Watch Video Solution

36. Find the derivative of the following function from first principle:- x^3-27

37. Find the derivative of the following function from first principle:- (x-1)(x-2)

Watch Video Solution

38. Find the derivative of the following function from first principle:- $\frac{1}{x^2}$

39. Find the derivative of the following function from first principle:- $\frac{x+1}{x-1}$

Watch Video Solution

40. For the function

$$f(x) = rac{x^{100}}{100} + rac{x^{99}}{99} + ... + rac{x^2}{2} + x + 1.$$

Prove that f'(1) = 100f'(0).

41. Find the derivative of

$$x^{n} + ax^{n-1} + a^{2}x^{n-2} + \ldots + a^{n-1}x + a^{n}$$

for some fixed real number a.

Watch Video Solution

42. For some constants a and b, find the derivative of (x-a)(x-b)

43. For some constants a and b, find the derivative of $\left(ax^2+b\right)^2$

Watch Video Solution

44. For some constants a and b, find the derivative of $\frac{x-a}{x-b}$

45. Find the derivative of $\frac{x^n - a^n}{x - a}$ for some constant a.

47. Find the derivative of:-

Watch Video Solution

46. Find the derivative of:- $2x-\frac{3}{4}$

$$\big(5x^3+3x-1\big)(x-1)$$

48. Find the derivative of:-
$$x^{-3}(5+3x)$$

49. Find the derivative of:- $x^5(3-6x^{-9})$

50. Find the derivative of:- $x^{-4}(3-4x^{-5})$

51. Find the derivative of:-
$$\dfrac{2}{x+1}-\dfrac{x^2}{3x-1}$$

52. Find the derivative of cos x from first principle.

53. Find the derivative of the following function: $\sin x \cos x$

Watch Video Solution

54. Find the derivative of the following function: $5 \sec x + 4 \cos x$

55. Find the derivative of the following

function: $\cos ecx$

Watch Video Solution

56. Find the derivative of the following function: $3 \cot x + 5 \cos ecx$

57. Find the derivative of the following

function: $5\sin x - 6\cos x + 7$

Watch Video Solution

58. Find the derivative of the following function: $2 \tan x - 7 \sec x$

59. Find the derivative of the following function from first principle: -x

Watch Video Solution

60. Find the derivative of the following function from first principle: $(-x)^{-1}$

61. Find the derivative of the following function from first principle: $\sin(x+1)$

Watch Video Solution

62. Find the derivative of the following function from first principle: $\cos\left(x-\frac{\pi}{8}\right)$

63. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): (x + a)

Watch Video Solution

64. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(px + q)\left(\frac{r}{x} + s\right)$

65. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)(cx + d)^2$

Watch Video Solution

66. Find the derivative of the following function (it is to be understood that a, b, c,

d,p, q, r and s are fixed non-zero constants and m and n are integers): $\dfrac{ax+b}{cx+d}$

Watch Video Solution

67. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$

68. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1}{ax^2 + bx + c}$

Watch Video Solution

69. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax+b}{px^2+qx+r}$

70. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{px^2+qx+r}{ax+b}$

Watch Video Solution

71. Find the derivative of the following function (it is to be understood that a, b, c,

d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a}{x^4} - \frac{b}{x^2} + \cos x$

Watch Video Solution

72. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $4\sqrt{x}-2$

73. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)^n$

Watch Video Solution

74. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)^n (cx + d)^m$

75. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\sin(x + a)$

Watch Video Solution

76. Find the derivative of the following function (it is to be understood that a, b, c,

d,p, q, r and s are fixed non-zero constants and m and n are integers): $\cos ecx \cot x$

Watch Video Solution

77. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\cos x}{1+\sin x}$

78. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin x + \cos x}{\sin x - \cos x}$

Watch Video Solution

79. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sec x - 1}{\sec x + 1}$

80. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\sin^n x$

Watch Video Solution

81. Find the derivative of the following function (it is to be understood that a, b, c,

d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a + b \sin x}{c + d \cos x}$

Watch Video Solution

82. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin(x+a)}{a}$

83. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $x^4(5\sin x - 3\cos x)$

Watch Video Solution

84. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(x^2 + 1)\cos x$

85. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(ax^2 + \sin x)(p + q\cos x)$

86. Find the derivative of the following function (it is to be understood that a, b, c,

d,p, q, r and s are fixed non-zero constants and m and n are integers): $(x + \cos x)(x - \tan x)$

Watch Video Solution

87. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{4x + 5\sin x}{3x + 7\cos x}$

88. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x^2\cos\left(\frac{\pi}{4}\right)}{\sin x}$

Watch Video Solution

89. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{1+\tan x}$

90. Find the derivative of the following function (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers): $(x + \sec x)(x - \tan x)$

Watch Video Solution

91. Find the derivative of the following function (it is to be understood that a, b, c,

d,p, q, r and s are fixed non-zero constants and

m and n are integers): $\frac{x}{\sin^n x}$

