©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - PSEB

PRINCIPLE OF MATHEMATICAL INDUCTION

Exercise

1. Prove the following by using the principle of mathematical induction for all $n \in N:-1+3+3^{2}+\ldots .+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$.

- Watch Video Solution

2. Prove the following by using the principle of mathematical induction for all $n \in N:-1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
3. Prove the following by using the principle of mathematical induction for
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{n \in N}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}$

D Watch Video Solution

4. Prove the following by using the principle of mathematical $\begin{array}{lccc}\text { induction } \begin{array}{c}\text { for }\end{array} & n \in N \\ 1.2 .3+2.3 .4+\ldots+n(n+1)(n+2) & = & \begin{array}{c}n(n+1)(n+2)(n+3) \\ 4\end{array}\end{array}$

- Watch Video Solution

5. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$.

D Watch Video Solution

6. Prove the following by using the principle of mathematical $\begin{array}{lcc}\text { induction for } & \text { all } & n \in N \\ 1.2+2.3+3.4+\ldots+n .(n+1) & =\left[\frac{n(n+1)(n+2)}{3}\right]\end{array}$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction for
all $n \in N$
$1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
8. Prove the following by using the principle of mathematical induction for all $n \in N:-\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.

(D) Watch Video Solution

9. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$

D Watch Video Solution

10. Prove the following by using the principle of mathematical $\begin{aligned} & \text { induction } \\ & \begin{array}{l}\text { for }\end{array} \text { all } \\ & \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}\end{aligned}=\frac{n(n+3)}{4(n+1)(n+2)}$
11. Prove the following by using the principle of mathematical induction for all $n \in N:-a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$.

D Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N$ $\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$.

D Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1) .
$$

14. Prove the following by using the principle of mathematical induction for all $n \in N$
$1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$.

Watch Video Solution

15. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$.

D Watch Video Solution

16. Prove the following by using the principle of mathematical
induction

for
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}$

$=\frac{n \in N}{3(2 n+3)}$.
17. Prove the following by using the principle of mathematical induction for all $n \in N:-1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$.

D Watch Video Solution

18. Prove the following by using the principle of mathematical induction for all $n \in N:-n(n+1)(n+5)$ is a multiple of 3 .'

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for all $n \in N:-10^{2 n-1}+1$ is divisible by 11 .
20. Prove the following by using the principle of mathematical induction for all $n \in N:-x^{2 n}-y^{2 n}$ is divisible by $x+y$.

D Watch Video Solution

21. Prove the following by using the principle of mathematical induction for all $n \in N$:- $3^{2 n+2}-8 n-9$ is divisible by 8 .

(D) Watch Video Solution

22. Prove the following by using the principle of mathematical induction for all $n \in N:-41^{n}-14^{n}$ is a multiple of 27 .

D Watch Video Solution

23. Prove the following by using the principle of mathematical induction for all $n \in N:-(2 n+7)<(n+3)^{2}$.

- Watch Video Solution

