đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PSEB

KINETIC THEORY

Exercise

1. Estimate the fraction of molecular volume to
the actual volume occupied by oxygen gas at

STP. Take the diameter of an oxygen molecule to be $3 \stackrel{\circ}{A}$.

D Watch Video Solution

2. Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard temperature and pressure (STP : 1 atmospheric pressure, $\left.0^{\circ} C\right)$. Show that it is 22.4 litres.
3. Figure 13.8 shows plot of $P V / T$ versus P for $l . O O \times l O^{-3} \mathrm{~kg}$ of oxygen gas at two different temperatures. What does the dotted plot signif?:

4. Figure 13.8 shows plot of $P V / T$ versus P for $l . O O \times l O^{-3} \mathrm{~kg}$ of oxygen gas at two different temperatures. Which is true: T_1 > T_2 or T_1 < T_2?:

5. Figure 13.8 shows plot of $P V / T$ versus P for $l . O O \times l O^{-3} \mathrm{~kg}$ of oxygen gas at two different temperatures What is the value of PV/Twhere the curves meet on the y-axis? :

6. An oxygen cylinder of volume 30 litres has
an initial gauge pressure of 15 atm and a temperature of $27^{\circ} \mathrm{C}$. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to $17^{\circ} C$. Estimate the mass of oxygen taken out of the cylinder
$R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}, \mathrm{mo} \leq$ carmassof
O_2 ${ }^{\prime}=32 \mathrm{u}$)
7. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from
the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface, which is at a temperature of $35^{\circ} \mathrm{C}$?

D Watch Video Solution

8. Estimate the total number of air molecules
(inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity
$25.0 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm pressure.

D Watch Video Solution

9. Estimate the average thermal energy of a helium atom at room temperature $\left(27^{\circ} \mathrm{C}\right)$

D Watch Video Solution

10. Estimate the average thermal energy of a helium atom at the temperature on the

D Watch Video Solution

11. Estimate the average thermal energy of a
helium atom the temperature of 10 million
kelvin (the typical core temperature in the
case of a star)

D Watch Video Solution
12. Three vessels of equal capacity have gases
at the same temperature and pressure. The
first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the (polyatomic). Do the vessels contain equal number of respective molecules ? Is the root mean square speed of molecules the same in the three cases? If not, in which case is $u_{r} m s$ the largest?
13. At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rmsspeed of a helium gas atom at $-20^{\circ} C$? (atomic mass of $\mathrm{Ar}=39.9 \mathrm{u}$, of $\mathrm{He}=4.0 \mathrm{u}$).

D Watch Video Solution

14. Estimate the mean free path and collision
frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and
temperature $17^{\circ} \mathrm{C}$. Take the radius of a nitrogen molecule to be roughly $1.0 \AA$.

Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of $N_{2}=28.0 \mathrm{u}$).

D Watch Video Solution

15. A metre long narrow bore held horizontally
(and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of
air. What happens if the tube is held vertically with the open end at the bottom?

D Watch Video Solution

16. From a certain apparatus, the diffusion rate of hydrogen has an average value of $28.7 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The diffusion of another gas under the same conditions is measured to have an average rate of $7.2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Identify the gas
17. Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:

Carbon (diamond)	$\mathbf{1 2 . 0 1}$	
Gold	197.00	2.22
Nitrogen (liquid)	14.01	19.32
Lithium (liquid)	6.94	1.00
Fluorine	19.00	0.53

