©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PSEB

Laws of Motion

Exercise

1. Give the magnitude and direction of the net
force acting on:- a drop of rain falling down
with a constant speed.
2. Give the magnitude and direction of the net
force acting on:- a cork of mass 10 g floating on water.
(Watch Video Solution
3. Give the magnitude and direction of the net
force acting on:- a kite skillfully held stationary
in the sky.
4. Give the magnitude and direction of the net force acting on:- a car moving with a constant velocity of $30 \mathrm{~km} / \mathrm{h}$ on a rough road.

- Watch Video Solution

5. Give the magnitude and direction of the net force acting on:- a high-speed electron in space far from all material objects, and free of electric and magnetic fields.

- Watch Video Solution

6. A pebble of mass 0.05 kg is thrown vertically
upwards. Give the direction and magnitude of
the net force on the pebble:- during its upward motion.

- Watch Video Solution

7. A pebble of mass 0.06 kg is thrown vertically upwards. Give the direction and magnitude of
the net force on the pebble:- during its downward motion.

D Watch Video Solution

8. A pebble of mass 0.07 kg is thrown vertically upwards. Give the direction and magnitude of
the net force on the pebble:- at the highest point where it is momentarily at rest. Do your answers change if the pebble was thrown at an angle of 45° with the horizontal direction? Ignore air resistance.
9. Give the magnitude and direction of the net force acting on a stone of mass 0.1kg:- just after it is dropped from the window of a stationary train, Neglect air resistance throughout.

- Watch Video Solution

10. Give the magnitude and direction of the net force acting on a stone of mass 0.1kg:- just
after it is dropped from the window of a train
running at a constant velocity of $36 \mathrm{~km} / \mathrm{h}$,

Neglect air resistance throughout.

D Watch Video Solution

11. Give the magnitude and direction of the net
force acting on a stone of mass 0.1 kg :- just after it is dropped from the window of a train accelerating with $1 m s^{-2}$, Neglect air resistance throughout.
12. Give the magnitude and direction of the net force acting on a stone of mass 0.1kg:-
lying on the floor of a train which is accelerating with $1 m s^{-2}$, the stone being at rest relative to the train.Neglect air resistance throughout.

D Watch Video Solution

13. One end of a string of length t is connected to a particle of mass m and the other to a
small peg on a smooth horizontal table. If the particle moves in a circle with speed v the net force on the particle (directed towards the centre) is : T is the tension in the string. [Choose the correct alternative].
A. T,
B. $T-\frac{m v^{2}}{l}$
C. $T+\frac{m v^{2}}{l}$,
D. 0

Answer:

14. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 m s^{-1}$. How long does the body take to stop ?

- Watch Video Solution

15. A constant force acting on a body of mass
3.0 kg changes its speed from $2.0 \mathrm{~ms}^{-1}$ to
$3.5 m s^{-1}$ in 25 s . The direction of the motion
of the body remains unchanged. What is the magnitude and direction of the force?

D Watch Video Solution

16. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N . Give the magnitude and direction of the acceleration of the body.
17. The driver of a three-wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child.

What is the average retarding force on the
vehicle ? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg .

- Watch Video Solution

18. A rocket with a lift-off mass $20,000 \mathrm{~kg}$ is
blasted upwards with an initial acceleration of
$5.0 \mathrm{~ms}^{-2}$. Calculate the initial thrust (force) of the blast.

- Watch Video Solution

19. A body of mass 0.40 kg moving initially with
a constant speed of $10 \mathrm{~ms}^{-1}$ to the north is
subject to a constant force of 8.0 N directed
towards the south for 30 s . Take the instant
the force is applied to be $t=0$, the position of the body at that time to be $x=0$, and predict its position at $t=-5 \mathrm{~s}, 25 \mathrm{~s}, 100 \mathrm{~s}$.

D Watch Video Solution

20. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is
dropped by a person standing on the top of
the truck (6 m high from the ground). What are the:- velocity of the stone at $t=11 \mathrm{~s}$?
(Neglect air resistance.)

Watch Video Solution

21. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is
dropped by a person standing on the top of
the truck (6 m high from the ground). What are the:- acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$?
(Neglect air resistance.)

- Watch Video Solution

22. A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is set into oscillation. The speed of the bob at its mean
position is $1 m s^{-1}$. What is the trajectory of the bob if the string is cut when the bob is:- at one of its extreme positions,

D Watch Video Solution

23. A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is set into
oscillation. The speed of the bob at its mean position is $1 m s^{-2}$. What is the trajectory of the bob if the string is cut when the bob is:- at its mean position.

- Watch Video Solution

24. A man of mass 70 kg stands on a weighing
scale in a lift which is moving :- upwards with a uniform speed of $10 \mathrm{~ms}^{-1}$, what would be the reading on scale?
25. A man of mass 70 kg stands on a weighing scale in a lift which is moving :- downwards with a uniform acceleration of $5 m s^{-2}$,

D Watch Video Solution

26. A man of mass 70 kg stands on a weighing
scale in a lift which is moving :- upwards with a
uniform acceleration of $5 \mathrm{~ms}^{-2}$. What would be the readings on the scale in each case?
27. A man of mass 70 kg stands on a weighing scale in a lift which is moving :- What would be
the reading if the lift mechanism failed and it hurtled down freely under gravity?

D Watch Video Solution

28. Figure shows the position-time graph of a particle of mass 4 kg . What is the:-force on the particle for $\mathrm{t}<0, \mathrm{t}>4 \mathrm{~s}, \mathrm{O}<\mathrm{t}<4 \mathrm{~s}$? (Consider
one-dimensional motion only)

D Watch Video Solution

29. Figure shows the position-time graph of a particle of mass 4 kg . What is the:- mpulse at t
$=0$ and $\mathrm{t}=4 \mathrm{~s}$? (Consider one-dimensional
motion only).

- Watch Video Solution

30. Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal
surface are tied to the ends of a light string, a horizontal force $\mathrm{F}=600 \mathrm{~N}$ is applied to:- A what is the tension in the string?

- Watch Video Solution

31. Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal surface are tied to the ends of a light string, a horizontal force $F=600 \mathrm{~N}$ is applied to:-B along the direction of string. What is the tension in the string in each case?
32. Two masses 8 kg and 12 kg are connected at the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses, and the tension in the string when the masses are released.

D Watch Video Solution

33. A nucleus is at rest in the laboratory frame of reference. Show that if it disintegrates into
two smaller nuclei the products must move in opposite directions.

D Watch Video Solution

34. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed
$6 m s^{-1}$ collide and rebound with the same
speed. What is the impulse imparted to each ball due to the other?

D Watch Video Solution

35. A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, what is the recoil speed of the gun?

D Watch Video Solution

36. A batsman deflects a ball by an angle of
45° without changing its initial speed which is
equal to $54 k m / h$. What is the impulse imparted to the ball ? (Mass of the ball is 0.15 kg.)
37. A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius 1.5 m with a speed of 40 rev . / min in a horizontal plane. What is the tension in the string ? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N ?

D Watch Video Solution

38. If, in Exercise 5.21, the speed of the stone is
increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory
of the stone after the string breaks :- the stone moves radially outwards.

- Watch Video Solution

39. If, in Exercise 5.21, the speed of the stone is
increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory of the stone after the string breaks :- the stone flies off tangentially from the instant the string breaks.

- Watch Video Solution

40. If, in Exercise 5.21, the speed of the stone is
increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory
of the stone after the string breaks :- the
stone flies off at an angle with the tangent whose magnitude depends on the speed of the particle?

D Watch Video Solution

41. Explain why:- a horse cannot pull a cart and run in empty space.

D Watch Video Solution
42. Explain why:- passengers are thrown forward from their seats when a speeding bus stops suddenly.

- Watch Video Solution

43. Explain why:- it is easier to pull a lawn mower than to push it.

D Watch Video Solution
44. Explain why:- a cricketer moves his hands backwards while holding a catch.

D Watch Video Solution

45. Figure 5.17 shows the position-time graph of a body of mass 0.04 kg . Suggest a suitable physical context for this motion. What is the time between two consecutive impulses received by the body? What is the magnitude
of each impulse?

- Watch Video Solution

46. Figure 5.18 shows a man standing stationary with respect to a horizontal conveyor belt that is accelerating with $1 m s^{-2}$.

What is the net force on the man? If the coefficient of static friction between the man's
shoes and the belt is 0.2 , up to what
acceleration of the belt can the man continue to be stationary relative to the belt ? (Mass of the man = 65 kg .)

D Watch Video Solution

47. A stone of mass mtied to the end of a
string revolves in a vertical circle of radius R.

The net forces at the lowest and highest
points of the circle directed vertically downwards are : [Choose the correct alternative] T_{1} and v_{1} denote the tension and speed at the lowest point. T_{2} and v_{2} denote corresponding values at the highest point.
(a) $m g-\mathrm{Tl}$
(b) $m g+\mathrm{Tl}$
(c) $m g+T 1-(m v 2 l) / R$
(d) $m g-T_{1}-\left(m v_{1}^{2}\right) / R$

```
mg +T2
mg -T2
mg ~T2+ (mv) / R
mg+T2+(\mp@subsup{\textrm{mu}}{2}{})/R
```


D Watch Video Solution

48. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the:- force on the floor by the crew and passengers,

D Watch Video Solution

49. A helicopter of mass 1000 kg rises with a
vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the:- action of the rotor of the helicopter on the surrounding air,

D Watch Video Solution

50. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and the passengers weigh 300 kg . Give the magnitude and direction of the:- action of the rotor of the helicopter on the surrounding air,

D Watch Video Solution

51. A stream of water flowing horizontally with
a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of cross-sectional area $10^{-2} m^{2}$, and hits a
vertical wall nearby. What is the force exerted on the wall by the impact of water, assuming it does not rebound?

D Watch Video Solution

52. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m Give
the magnitude and direction of:- the force on
the 7th coin (counted from the bottom) due to all the coins on its top,
53. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m Give the magnitude and direction of:- the force on the 7th coin by the eighth coin,

- Watch Video Solution

54. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m Give the magnitude and direction of:- the reaction of the 6th coin on the 7th coin.

- Watch Video Solution

55. An aircraft executes a horizontal loop at a speed of $720 \mathrm{~km} / \mathrm{h}$ with its wings banked at 15°. What is the radius of the loop?

- Watch Video Solution

56. A train runs along an unbanked circular track of radius 30 m at a speed of $54 \mathrm{~km} / \mathrm{h}$.

The mass of the train is $10^{6} \mathrm{~kg}$. What provides
the centripetal force required for this purpose

- Hie engine or the rails? What is the angle of banking required to prevent wearing out of the rail?

D Watch Video Solution

57. A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in Fig. 5.19.

What is the action on the floor by the man in
the two cases ? If the floor yields to a normal
force of 700 N , which mode should the man
adopt to lift the block without the floor yielding?

D Watch Video Solution
58. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension
of 600 N . in which of the following cases will
the rope break: the monkey:-

A. (a) climbs up with an acceleration of 6 $m s^{-2}$
B. (b) climbs down with an acceleration of
$4 m s^{-2}$
C. (c) climbs up with a uniform speed of 5
$m s^{-1}$
D. (d) falls down the rope nearly freely
under gravity? (Ignore the mass of the
rope).
59. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension of 600 N . in which of the following cases will the rope break: the monkey:- climbs down with
an acceleration of $4 m s^{-2,}$

Hercharbrimy

60. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension
of 600 N . in which of the following cases will
the rope break: the monkey:- climbs up with a
uniform speed of $5 m s^{-1}$

Haremertrictr

- Watch Video Solution

61. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension of 600 N . in which of the following cases will
the rope break: the monkey:-

- Watch Video Solution

62. Two bodies A and B of masses 5 kg and 10 kg in contact with each other rest on a table against a rigid wall (Fig. 5.21). The coefficient of friction between the bodies and the table is
0.15. A force of 200 N is applied horizontally to
A. What are :- the reaction of the partition.

63. A block of mass 15 kg is placed on a long trolley. The coeffcient os static friction between the block and the trolley is 0.18 . The trolley accelerates from rest with $0.5 m s^{-2}$ for

20 s and then moves with uniform velocity. Discuss the motion of the block as viewed by:a stationary observer on the ground.
64. A block of mass 15 kg is placed on a long trolley. The coeffcient os static friction between the block and the trolley is 0.18 . The trolley accelerates from rest with $0.5 m s^{-2}$ for 20 s and then moves with uniform velocity. Discuss the motion of the block as viewed by:an observer moving with the trolley.

- Watch Video Solution

65. The rear side of a truck is open and a box of 40 kg mass is placed 5 m away from the open end as shown in Fig. 5.22. The coeffcient of friction between the box and the surface below it is 0.15 . On a straight road, the truck starts from rest and accelerates with $2 m s^{-2}$.

At what distance from the starting point does
the box fall off the truck? (Ignore the size of the box).

- Watch Video Solution

66. A disc revolves with a spped of $33\left(\frac{1}{3}\right) \mathrm{rev} / \mathrm{min}$, and has a radius of 15 cm .

Two coins are placed at 4 cm and 14 cm away from the centre the record. If the co-effcient of friction between the coins and the record is 0.15 , which of the coins will revolve with the record?
67. You may have seen in a circus a motorcyclist driving in vertical loops inside a
'death- well' (a hollow spherical chamber with
holes, so the spectators can watch from outside). Explain clearly why the motorcyclist does not drop down when he is at the uppermost point, with no support from below. What is the minimum speed required at the uppermost position to perform a vertical loop if the radius of the chamber is 25 m ?

Watch Video Solution

68. A 70 kg man stands in contact against the ineer wall of a hollow cylindrical drum of radius 3 m rotating about its vertical axis with

200 rev / min. The coeffcient of friction between the wall and his clothing is 0.15 . What is the minimum rotational speed of the cylinder to enable the man of remain stuck to the wall (without falling) when the floor ids suddenly removed?

D Watch Video Solution

69. A thin circular loop of radius R rotates
about its vertical diameter with an angular
frequency ω. Show that a small bead on the
wire loop rem ains at its lowermost point for
$\omega \sqrt{\frac{g}{R}}$ What is the angle made by the radius vector joining the centre to the bead with the vertical downward direction for $\omega=\sqrt{2 \frac{g}{R}}$? neglect friction.

- Watch Video Solution

