©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PSEB

MOTION IN A PLANE

Exercise

1. State, for each of the following physical
quantities, if it is a scalar or a vector : volume,
mass, speed, acceleration, density, number of
moles, velocity, angular frequency,
displacement, angular velocity.

D Watch Video Solution

2. Pick out the two scalar quantities in the following list : force, angular momentum, work, current, linear momentum, electric field, average velocity, magnetic moment, relative velocity.
3. Pick out the only vector quantity in the following list : Temperature, pressure, impulse, time, power, total path length, energy, gravitational potential, coefficient of friction, charge.

- Watch Video Solution

4. State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :- adding any two scalars,

- Watch Video Solution

5. State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :- adding a scalar to a vector of the same dimensions

- Watch Video Solution

6. State with reasons, whether the following algebraic operations with scalar and vector
physical quantities are meaningful :multiplying any vector by any scalar,

D Watch Video Solution

7. State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :multiplying any two scalars,
8. State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :- adding any two vectors,

- Watch Video Solution

9. State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :- adding any two vectors,
10. Read each statement below carefully and state with reasons, if it is true or false :- The magnitude of a vector is always a scalar,

- Watch Video Solution

11. Read each statement below carefully and state with reasons, if it is true or false :- each component of a vector is always a scalar,
12. Read each statement below carefully and state with reasons, if it is true or false :- the total path length is always equal to the magnitude of the displacement vector of a particle,

D Watch Video Solution

13. Read each statement below carefully and
state with reasons, if it is true or false :- the
average speed of a particle (defined as total path length divided by the time taken to cover the path) is either greater or equal to the magnitude of average velocity of the particle over the same interval of time,

D Watch Video Solution

14. Read each statement below carefully and state with reasons, if it is true or false :- Three vectors not lying in a plane can never add up to give a null vector.
15. Three girls skating on a circular ice ground of radius 200 m start from a point P on the edge of the ground and reach a point Q diametrically opposite to Pfollowing different paths as shown in Fig. 4.20. What is the magnitude of the displacement vector for each ? For which girl is this equal to the actual
length of path skate?

- Watch Video Solution

16. A cyclist starts from the centre Oof a circular park of radius 1 km , reaches the edge P of the park, then cycles along the circumference, and returns to the centre along

QO as shown in Fig. 4.21. If the round trip takes 10 min , what is the:- net displacement,

17. A cyclist starts from the centre Oof a circular park of radius 1 km , reaches the edge P of the park, then cycles along the circumference, and returns to the centre along

QO as shown in Fig. 4.21. If the round trip
takes 10 min , what is the:- average velocity, and

- Watch Video Solution

18. A cyclist starts from the centre Oof a circular park of radius 1 km , reaches the edge P of the park, then cycles along the
circumference, and returns to the centre along

QO as shown in Fig. 4.21. If the round trip takes 10 min , what is the:- average speed of the cyclist?

- Watch Video Solution

19. On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m . Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

- Watch Video Solution

20. A passenger arriving in a new town wishes
to go from the station to a hotel located 10
km away on a straight road from the station. A
dishonest cabman takes him along a
circuitous path 23 km long and reaches the hotel in 28 min . What is:- the average speed of the taxi,

- Watch Video Solution

21. A passenger arriving in a new town wishes
to go from the station to a hotel located 10
km away on a straight road from the station. A
dishonest cabman takes him along a
circuitous path 23 km long and reaches the
hotel in 28 min . What is:- the magnitude of average velocity ? Are the two equal ?

D Watch Video Solution

22. Rain is falling vertically with a speed of $30 \mathrm{~ms}^{-1}$. A woman rides a bicycle with a speed of $10 \mathrm{~ms}^{-1}$ in the north to south direction.

What is the direction in which she should hold her umbrella ?

D Watch Video Solution

23. A man can swim with a speed of $4.0 \mathrm{~km} / \mathrm{h}$ in still water. How long does he take to cross a river 1.0 km wide if the river flows steadily at
$3.0 \mathrm{~km} / h$ and he makes his strokes normal to the river current? How far down the river does he go when he reaches the other bank ?

D Watch Video Solution

24. In a harbour, wind is blowing at the speed
of $72 \mathrm{~km} / \mathrm{h}$ and the flag on the mast of a boat
anchored in the harbour flutters along the N-E
direction. If the boat starts moving at a speed
of $51 \mathrm{~km} / \mathrm{h}$ to the north, what is the direction of the flag on the mast of the boat ?
25. Tire ceiling of a long hall is 25 m high.

What is the maximum horizontal distance that
a ball thrown with a speed of $40 \mathrm{~ms}^{-1}$ can go without hitting the ceiling of the hall ?

- Watch Video Solution

26. A cricketer can throw a ball to a maximum horizontal distance of 100 m . How much high
above the ground can the cricketer throw the same ball ?

D Watch Video Solution

27. A stone tied to the end of a string 80 cnr
long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 25 s , what is the magnitude and direction of acceleration of the stone?
28. An aircraft executes a horizontal loop of radius 1.00 knr with a steady speed of $900 \mathrm{~km} / \mathrm{h}$. Compare its centripetal acceleration with the acceleration due to gravity.

D Watch Video Solution

29. Read each statement below carefully and state, with reasons, if it is true or false :- The net acceleration of a particle in circular
motion is always along the radius of the circle towards the centre

D Watch Video Solution

30. Read each statement below carefully and state, with reasons, if it is true or false :- The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point
31. Read each statement below carefully and state, with reasons, if it is true or false :- The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector

D Watch Video Solution

32. The position of a particle is given by $r=3.0 t \hat{i}-2.0 t^{2} \hat{j}+4.0 \hat{k} m$ where tis in seconds and the coefficients have the proper
units for r to be in metres:- Find the v and a of the particle?

D Watch Video Solution

33. The position of a particle is given by $r=3.0 t \hat{i}-2.0 t^{2} \hat{j}+4.0 \hat{k} m$ where tis in
seconds and the coefficients have the proper
units for r to be in metres:- What is the magnitude and direction of velocity of the particle at $t=2.0 \mathrm{~s}$?
34. A particle starts from the origin at $t=0 \mathrm{~s}$ with a velocity of $10.0 \hat{j} m / s$ and moves in the $x-y$ plane with a constant acceleration of $(8.0 \hat{i}+2.0 \hat{j}) \mathrm{ms}^{-2}$,:- At what time is the $\mathrm{x}-$ coordinate of the particle 16 m ? What is the y coordinate of the particle at that time?

D Watch Video Solution

35. A particle starts from the origin at $\mathrm{t}=0 \mathrm{~s}$ with a velocity of $10.0 \hat{j} m / s$ and moves in the
$x-y$ plane with a constant acceleration of
$(8.0 \hat{i}+2.0 \hat{j}) m s^{-2}$,:- What is the speed of the particle at the time ?

D Watch Video Solution

36. \hat{i} and \hat{j} are unit vectors along x - and y axis respectively. What is the magnitude and direction of the vectors $\hat{i}+\hat{j}$, and $\hat{i}-\hat{j}$?

What are the components of a vector
$A=2 \hat{i}+3 \hat{j}$ along the directions of
$\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$? [You may use graphical

method]

- Watch Video Solution

37. For any arbitrary motion in space, which of the following relations are true :-
v_{a} ver $a \geq=\left(\frac{1}{2}\right)\left(v\left(t_{1}\right)\right)+\left(v\left(t_{2}\right)\right)$ (The
'average' stands for average of the quantity over the time interval $t_{1} \rightarrow t_{2}$)
38. For any arbitrary motion in space, which of
the following relations are true :-
v_{a} vera $\geq=\left[r\left(t_{2}\right)-r \frac{t_{1}}{t_{2}-t_{1}}\right.$ (The 'average'
stands for average of the quantity over the
time interval $t_{1} \rightarrow t_{2}$)

D Watch Video Solution

39. For any arbitrary motion in space, which of the following relations are true :$v(t)=v(O)+a t$ (The 'average' stands for
average of the quantity over the time interval

$$
\left.t_{1} \rightarrow t_{2}\right)
$$

- Watch Video Solution

40. For any arbitrary motion in space, which of the following relations are true :-
$r(t)=r(O)+v(O) t+\left(\frac{1}{2}\right) a t^{2}$ (The
'average' stands for average of the quantity over the time interval $t_{1} \rightarrow t_{2}$)
41. For any arbitrary motion in space, which of the following relations are true :-
$a_{a} v \operatorname{erag} \frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}$ (The 'average' stands for average of the quantity over the time interval

$$
\left.t_{1} \rightarrow t_{2}\right)
$$

D Watch Video Solution

42. Read each statement below carefully and
state, with reasons and examples, if it is true or false :-A scalar quantity is one that:- is conserved in a process

- Watch Video Solution

43. Read each statement below carefully and state, with reasons and examples, if it is true or false :-A scalar quantity is one that:- can never take negative values

- Watch Video Solution

44. Read each statement below carefully and
state, with reasons and examples, if it is true
or false :- A scalar quantity is one that:- must be dimensionless

D Watch Video Solution

45. Read each statement below carefully and state, with reasons and examples, if it is true or false :- A scalar quantity is one that:- does not vary from one point to another in space
46. Read each statement below carefully and state, with reasons and examples, if it is true or false :- A scalar quantity is one that:- has the same value for observers with different orientations of axes.

D Watch Video Solution

47. An aircraft is flying at a height of 3400 m
above the ground. If the angle subtended at a ground observation point by the aircraft
positions 10.0 s apart is 30°, what is the speed of the aircraft ?

D Watch Video Solution

48. A vector has both magnitude and direction. Does it mean that anything that has magnitude and direction is necessarily a
vector ?The rotation of a body can be specified by the direction of the axis of rotation, and the angle of rotation about the axis. Does that make any rotation a vector ?

Watch Video Solution

49. Can you associate vectors with:- the length of a wire bent into a loop, Explain.

- Watch Video Solution

50. Can you associate vectors with:- a plane area, Explain.
51. Can you associate vectors with:-a sphere ?

Explain.

D Watch Video Solution

52. A bullet fired at an angle of 30° with the horizontal hits the ground 3.0 km away. By adjusting its angle of projection, can one hope to hit a target 5.0 km away ? Assume the muzzle speed to be fixed, and neglect air resistance.
53. A fighter plane flying horizontally at an altitude of 1.5 km with speed $720 \mathrm{~km} / h$ passes directly overhead an anti-aircraft gun. At what angle from the vertical should the gun be fired for the shell with muzzle speed $600 \mathrm{~ms}^{-1}$ to hit the plane ? At what minimum altitude should the pilot fly the plane to avoid being hit ? (Take $\mathrm{g}=10 \mathrm{~ms}^{2}$).
54. A cyclist is riding with a speed of $27 \mathrm{~km} / \mathrm{h}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces his speed at the constant rate of $0.50 \mathrm{~m} / \mathrm{s}$ every second. What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?

- Watch Video Solution

55. Shows that the projection angle θ_{o} for a projectile launched from the origin is given by
$\theta_{o}=\tan ^{-1}\left(\frac{4 h_{m}}{R}\right)$ where the symbols have their usual meaning.

- Watch Video Solution

