©゙" doubtnut
 India's Number 1 Education App

PHYSICS

BOOKS - PSEB

THERMODYNAMICS

Exercise

1. A geyser heats water flowing at the rate of
3.0 litres per minute from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$. If
the geyser operates on a gas burner, what is
the rate of consumption of the fuel if its heat of combustion is $4.0 \times 10^{4} \mathrm{~J} / \mathrm{g}$?

D Watch Video Solution

2. What amount of heat must be supplied to
$2.0 \times 10^{-2} \mathrm{~kg}$ of nitrogen (at room temperature) to raise its temperature by
$45^{\circ} \mathrm{C}$ at constant pressure ? (Molecular mass

$$
\text { of } \left.N_{2}=28, R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} .\right)
$$

D Watch Video Solution

3. Explain why Two bodies at different temperatures T_{1} and T_{2} if brought in thermal contact do not necessarily settle to the mean temperature $\left(T_{1}+T_{2}\right) / 2$.

D Watch Video Solution

4. Explain why The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.
5. Explain why Air pressure in a car tyre increases during driving.

D Watch Video Solution

6. Explain why The climate of a harbour town is
more temperate than that of a town in a desert at the same latitude.

D Watch Video Solution
7. A cylinder with a movable piston contains3moles of hydrogen atstandard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?

- Watch Video Solution

8. In changing the state of a gas adiabatically
from an equilibrium state A to another equilibrium state B, an amount of work equal to 22.3 Jis done on the system. If the gas is taken from state A to B via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case ? (Take 1 cal = 4.19 J)

- Watch Video Solution

9. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A
contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is
suddenly opened. Answer the following : What is the final pressure of the gas in A and B ?
10. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A
contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is
suddenly opened. Answer the following : What is the change in internal energy of the gas ?

D Watch Video Solution

11. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is
suddenly opened. Answer the following : What is the change in the temperature of the gas?

D Watch Video Solution

12. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A
contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is
suddenly opened. Answer the following : Do the intermediate states of the system (before settling to the final equilibrium state) lie on its

P-V-T surface ?
13. A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per minute and services $3.6 \times 10^{9} \mathrm{~J}$ of heat per minute from its boiler. What is the efficiency of the engine? flow much heat is wasted per minute?

D Watch Video Solution

14. An electric heater supplies heat to a system
at a rate of 100 W . If system performs work at a rate of 75 joules per second. At what rate isthe internal energy increasing?

Watch Video Solution

15. A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Fig. (12.13) Its volume is then reduced to the original value from E to

F by an isobaric process. Calculate the total work done by the gas from D to E to F :

16. A refrigerator isto maintain eatables kept inside at $9^{\circ} \mathrm{C}$. If room temperature is $36^{\circ} \mathrm{C}$, calculate the coefficient of performance.

- Watch Video Solution

