

PHYSICS

BOOKS - PSEB

THERMODYNAMICS

1. A geyser heats water flowing at the rate of 3.0 litres per minute from $27^{\circ}C$ to $77^{\circ}C$. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat

of combustion is $4.0 imes10^4 J/g$?

2. What amount of heat must be supplied to $2.0 imes 10^{-2} kg$ of nitrogen (at room temperature) to raise its temperature by $45^\circ C$ at constant pressure ? (Molecular mass of $N_2=28, R=8.3 Jmol^{-1}K^{-1}$.)

3. Explain why Two bodies at different temperatures T_1 and T_2 if brought in thermal contact do not necessarily settle to the mean temperature $(T_1 + T_2)/2$.

Watch Video Solution

4. Explain why The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.

5. Explain why Air pressure in a car tyre

increases during driving.

Watch Video Solution

6. Explain why The climate of a harbour town is

more temperate than that of a town in a

desert at the same latitude.

7. A cylinder with a movable piston contains3moles of hydrogen atstandard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?

8. In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium state B, an amount of work equal to 22.3 Jis done on the system. If the gas is taken from state A to B via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case ? (Take 1 cal = 4.19 J)

9. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : What is the final pressure of the gas in A and B?

10. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : What is the change in internal energy of the gas?

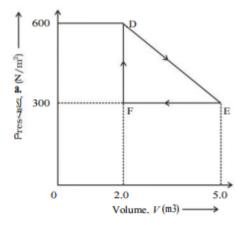
11. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : What is the change in the temperature of the gas?

12. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface ?

13. A steam engine delivers $5.4 \times 10^8 J$ of work per minute and services $3.6 \times 10^9 J$ of heat per minute from its boiler. What is the efficiency of the engine? flow much heat is wasted per minute?

Watch Video Solution

14. An electric heater supplies heat to a system


at a rate of 100W. If system performs work at a

rate of 75 joules per second. At what rate isthe

internal energy increasing?

15. A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Fig. (12.13) Its volume is then reduced to the original value from E to F by an isobaric process. Calculate the total work done by the gas from D to E to F :

16. A refrigerator isto maintain eatables kept

inside at $9^{\circ}C$. If room temperature is $36^{\circ}C$,

calculate the coefficient of performance.

