©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MBD

BEHAVIOUR OF PERFECT GAS AND

KINETIC THEORY

Example

1. What is the lowest temperature attainable
according to chalres' law?
2. What is one mole of an element ?

- Watch Video Solution

3. What is the nature of graph between pressure P and volume V for a gas at constant temperature?

4. What is the relation between pressure P and

 density ρ of a gas at constant temperature?- Watch Video Solution

5. What is the value of Rydberg constant?

- Watch Video Solution

6. What is Boltzmann constant. What is its
value in SI units?

Watch Video Solution

7. If a gas expands at constant temperature:

D Watch Video Solution

8. Can the temperature of a gas be increased
by keeping its pressure and volume constant?
9. What is the physical significance of molar gas constant R ?

D Watch Video Solution
10. At what temperature, the gas loses all its energy (i.e. molecular motion ceases).
(D) Watch Video Solution
11. Why temperature less than absolute zero is not possible?

D Watch Video Solution
12. When a gas is suddenly compressed, temperature rises. Why?
13. At 273 K , watr solidifies into ice. What
happens to the kinetic energy of water molecules?

D Watch Video Solution

14. How do you distinguish between average speed and root mean square speed of the molecules of a gas?
15. In the light of kinetic theory of gases, why pressure of container increases when the gas is heated?

- Watch Video Solution

16. According to the law of equipartition of energy, the energy associated with each degree of freedom is :
17. A glass of water is stirred and then allowed to stand until water stope moving. What has
happened to kinetic energy of the moving water?

D Watch Video Solution

18. What is mean free path of a gas molecule?

Show that the mean free path is inversely proportional to the pressure of the gas. Does
the mean free path depend upon the temperature of the gas?

Watch Video Solution

19. Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be $3 \AA$.

- Watch Video Solution

20. Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard temperature
and pressure (STP : 1 atmospheric pressure, $0^{\circ} C$). Show that it is 22.4 litres.

D Watch Video Solution

21. An oxygen cylinder of volume 30 litres has
an initial gauge pressure of 15 atm and a temperature of $27^{\circ} C$. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to $17^{\circ} C$. Estimate the mass of oxygen taken out of the cylinder
$R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}, \mathrm{mo} \leq$ carmassof
$\left.\mathrm{O}_{\mathbf{\prime}} 2^{\prime}=32 \mathrm{u}\right)$

- Watch Video Solution

22. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from
the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface, which is at a temperature of $35^{\circ} \mathrm{C}$?
23. Estimate the total number of air molecules
(inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity $25.0 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm pressure.

D Watch Video Solution

24. Estimate the average thermal energy of a helium atom at room temperature $\left(27^{\circ} \mathrm{C}\right)$
25. Estimate the average thermal energy of a helium atom at the temperature on the surface of the Sun (6000 K)

D Watch Video Solution

26. Estimate the average thermal energy of a
helium atom the temperature of 10 million
kelvin (the typical core temperature in the case of a star)
27. Three vessels of equal capacity have gases
at the same temperature and pressure. The first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride
(polyatomic). Do the vessels contain equal number of respective molecules? Is the root mean square speed of molecules the same in the three cases? If not, in which case is $u_{r} m s$ the largest?
28. At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rmsspeed of a helium gas atom at $-20^{\circ} C$? (atomic mass of $\mathrm{Ar}=39.9 \mathrm{u}$, of $\mathrm{He}=4.0 \mathrm{u}$).

- Watch Video Solution

29. Estimate the mean free path and collision
frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and
temperature $17^{\circ} \mathrm{C}$. Take the radius of a nitrogen molecule to be roughly $1.0 \AA$.

Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of $N_{2}=28.0 \mathrm{u}$).

D Watch Video Solution

30. A metre long narrow bore held horizontally
(and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of
air. What happens if the tube is held vertically with the open end at the bottom?

D Watch Video Solution

31. From a certain apparatus, the diffusion rate of hydrogen has an average value of $28.7 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The diffusion of another gas under the same conditions is measured to have an average rate of $7.2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Identify the gas
32. A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called 'law of atmospheres'
$n_{2}=n_{1} \exp \left[-(m g) \frac{H_{2}-H_{1}}{k T}\right]$ where
n_{2}, n_{1} refer to number density at heights h_{2}
and h_{1} respectively.Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:
$n_{2}=n_{1} \exp \left[\frac{-m g N_{a}}{R T}\left(1-\frac{\rho}{\rho}\right)\left(h_{2}-h_{1}\right)\right]$
where ρ is the density of the suspended particle, and ρ^{\prime} that of surrounding medium.
[N_{A} is Avogadro's number, and R the universal gas constant].

D Watch Video Solution

33. A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of $500 \mathrm{~ms}^{-1}$ in vertical direction. The pressure of the gas inside the vessel as observed by us on the ground.
A. (a) remains the same because $500 \mathrm{~ms}^{-1}$
is very much smaller than $v_{r m s}$ of the gas.
B. (b) remains the same because motion of
the vessel as a whole does not affect the relative motion of the gas molecules and
the walls.
C. (c) Will increase by a factor equal to
$\left.V_{r m s}^{2}+(500)^{2}\right) / v^{2}-(r m s)$ where $v_{r m s}$
was the original mean square velocity of
the gas.
D. (d) will be different on the top wall and
bottom wall of the vessel.

Answer:

D Watch Video Solution

34. Boyle's law is applicable for an

A. adiabatic process
B. isothermal process
C. isobaric process
D. isochoric process.

- Watch Video Solution

35. One mole of H_{2} gas is contained in a box of volume $V=1.00 \mathrm{~m}^{3}$ at $T=300 \mathrm{~K}$. The gas
is heated to a temperature of $\mathrm{T}=3000 \mathrm{~K}$ and the gas gets converted to a gas of hydrogen atoms. The final pressure would be (considering all gases of be ideal)
A. same as the pressure initially
B. 2 times the pressure initially
C. 10 times the pressure initially

D. 20 times the pressure initially.

Answer:

- Watch Video Solution

36. A vessel of volume V contains a mixture of 1 mole of Hydrogen and 1 mole of Oxygen (both considered as ideal). Let $f_{1}(\mathrm{v}) \mathrm{dv}$, denote the fraction of molecules with speed between v and $(v+d v)$ with $f_{2}(v) d v$, similarly for oxygen.

Then
A. $f_{1}(v)+f_{2}(v)=\mathrm{f}(\mathrm{v})$ obeys the Maxwell's distribution law.
B. $f_{1}(\mathrm{v}), f_{2}(\mathrm{~V})$ will obey the Maxwell's distribution law separately.
C. Neither $f_{1}(\mathrm{v})$, nor $f_{2}(\mathrm{v})$ will obey the Maxwell's distribution law.
D. $f_{2}(\mathrm{v})$ and $f_{1}(\mathrm{v})$ will be the same.

Answer:

D Watch Video Solution

37. An inflated rubber ballon contains one mole of an ideal gas, has a pressure p, volume V and temperature T . If the temperature rises
to 1.1 T , and the volume is increase to 1.05 V , the final pressure will be
A. 1.1p
B. p
C. less than p
D. between p and 1.1

- Watch Video Solution

38. Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. From the equation in kinetic theory $p V=\frac{2}{3} E, E$ is
A. (a) the total energy per unit volume
B. (b) only the translational part of energy
because rotational energy is very small
compared to the translational energy.

C. (c) only the translational part of the

energy because during collisions with
the wall pressure relates to change in
linear momentum.
D. (d) the translational part of the energy
because rotational energies of
molecules can be of either sign and it
average over all the molecules is zero.

Answer:

39. In a diatomic molecule, the rotational energy at a given temperature
A. obeys Maxwell's distribution
B. have the same value for all molecules
C. equals the translational kinetic energy
for each molecule.
D. is $(2 / 3)$ rd the translation kinetic energy
for each molecule.

Answer:

D Watch Video Solution

40. When an ideal gas is compressed adiabatically, its temperature rises, the molecules on the average have more kinetic energy than before. The kinetic energy increases,
A. because of collisions with moving parts of the wall only

B. because of collisions with the entire wall

C. because the molecules gets accelerated in their motion inside the volume
D. because of redistribution of energy amongst the molecules.

Answer:

D Watch Video Solution

41. Calculate the number of atms in 39.4 g gold. Molar mass of gold Is $197 \mathrm{~g} \mathrm{~mole}^{\wedge}-1$.

D Watch Video Solution

42. The volume of a given mass of a gas at $27^{\circ} \mathrm{Cm} 1$ atn us 100 cc . What will be it volume at $327^{\circ} C$?

Given $T_{1}=27+273=300 \mathrm{~K}, T_{2}=327+273=$ $600 \mathrm{~K}, V_{1}=100 \mathrm{cc}$.
43. The molecules of a given mass of a gas have root mean squar speeds of $100 \mathrm{~ms}^{-1}$ at
$27^{\circ} C$ and 1.00 atmospheric pressure. What will be the root mean square speeds of the molecules of the as at $127^{\circ} \mathrm{C}$ and 2.0 atmospheric pressure?

D Watch Video Solution

44. Two molecules of a gas have speeds of
$9 \times 10^{6} \mathrm{rms}^{-1}$ and $1 \times 10^{6} \mathrm{~ms}^{-1}$,
respectively. What is the root mean square

speed of these molecules?

D Watch Video Solution

45. A gas mixture consists of 2.0 moles of oxygen and 4.0 moles of neon at temperature
T. Nelglecting all vibrational modes, calculate the total internal energy of the system. (oxygen has two rotational modes).

D Watch Video Solution

46. Calculate the ratio of the mean free paths of the molecules of two gases having molecular diameters 1 and 2 . The gases may be considered under identical conditions of temperature, pressure and volume.

- Watch Video Solution

47. A gas mixture consists of molecules of types A, B and C with masses $m_{a}>m_{B}>m_{c}$ Rank the three types of molecules in decreeasing order of average K.E.

- Watch Video Solution

48. A gas mixture consists of molecules of types A, B and C with masses $m_{a}>m_{B}>m_{c}$ Rank the three types of molecules in decreeasing order of rms speeds.

D Watch Video Solution

49. We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in
the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state? (Hydrogen molecules can be consider as spheres of radius $1 A 0$).

D Watch Video Solution

50. When air is pumped into a cycle tyre the volume and pressure of the air in the tyre
both are increased. What about Boyle's law in this case?

D Watch Video Solution
51. A ballon has 5.0 g mole of helium at $7^{\circ} C$
calculate the number of atoms of helium in
the ballon.

- Watch Video Solution

52. A ballon has 5.0 g mole of helium at $7^{\circ} \mathrm{C}$
calculate the total internal eneryg of the system.

- Watch Video Solution

53. Calculate the number of degrees of freedom of molecules of hydrogen in 1 cc of hydrogen gas at NTP.
54. An insulated container containing monoatomic gas of molar mass m is moving with a velocity V_{o}. If the container is suddenly stopped, find the change in temperature.

- Watch Video Solution

55. Explain why moon has no atmosphere.

D Watch Video Solution

56. Explain why there is fall in temperature with altitude?

D Watch Video Solution

57. Ten small planes are flying at a speed of
$150 \mathrm{~km} / \mathrm{h}$ in total darkness in an air space that
is $20 \times 20 \times 1.5 \mathrm{~km}^{3}$ in volume. You are in one
of the planes, flying at random within this
space with no way of knowing where the other
planes are. On the average about how long a
time will elapse between near collision with
your plane. Assume for this rough computation that a safety region around the plane can be approximated by a sphere of radius 10 m .

D Watch Video Solution

58. A Box of $1.00 m^{3}$ is filled with nitrogen at
1.50 atm at 300 K . The box has a hole of an area $0.010 \mathrm{~mm}^{2}$. How much time is required
for the pressure to reduce by 0.10 atm. If the pressure outside is 1 atm.

D Watch Video Solution

59. Consider a rectangular block of wood moving with a velocity v_{0} in a gas at temperature T and mass density ρ. Assume the velocity is along X -axis and area of cross section of the block perpendicular to v_{0} is A .

Show that the drag force on the block is
$4(\rho) A v_{0} \frac{\sqrt{K T}}{m}$, where m is the mass of the gas molecule.

D Watch Video Solution

60. Give reason : a gas exerts pressure on the walls of the container.
A. Gas has weight
B. Gas molecules have momentum
C. Gas molecules collide with each other
D. Gas molecules collide with walls of the container.

Answer:

D Watch Video Solution

61. R.M.S. velocity of nitrogen molecules at
N.T.P. is
A. $33 m s^{-1}$
B. $493 m s^{-1}$
C. $517 m s^{-1}$
D. $546 m s^{-1}$

Answer:

D Watch Video Solution

62. For a gas, the r.m.s speed at 800 K
A. Four times the value at 200 K
B. Half the value of 200 K
C. Twice the value fo 200 K
D. Same as at 200 K

Answer:

D Watch Video Solution

63. The mean translation kinetic energy of a perfect gas molecule at temperature T is $(k=$ Boltzmann constant)
A. $\frac{1}{2} k t$
B. kt
C. $\frac{3}{2} k T$
D. $2 k T$

Answer:

D Watch Video Solution

64. According to kinetic theory of gases the absolute temperature of a gas is directly related to the average of
A. internal energy of gas molecules
B. Kinetic energy of gas molecules
C. Potential energy of gas molecules
D. Gravitational energy of gas molecules

Answer:

D Watch Video Solution

65. The rms speed of the molecules of a gas in a vessel Is $400 \mathrm{~ms}^{-1}$. If half of the gas leaks out at constant temperatuare, the rms speed of the remaining molecules will be
A. $800 m s^{-1}$
B. $400 \sqrt{2} m s^{-1}$
C. $400 m s^{-1}$
D. $200 \mathrm{~ms}^{-1}$

Answer:

D Watch Video Solution

66. AT what temperature is the r.m.s. velocity of
a hydrogen molecule equal to that of an oxygen molecule at $47^{\circ} C$?
A. 80 K
B. $-73 K$
C. 3 K
D. 20 K

Answer:
(D) Watch Video Solution
67. The kinetic energy of 1 g for hydrogen a $27^{\circ} C$ will be
A. $1.87 \times 10^{3} \mathrm{~J}$
B. $1.57 \times 10^{3} \mathrm{~J}$
C. $1.81 \times 10^{3} \mathrm{~J}$
D. $1.73 \times 10^{3} \mathrm{~J}$

Answer:

D Watch Video Solution
68. Th rate of diffusion is
A. Faster in solids than in liquids and gases

B. Faster in liquids and gases

C. Equal to solids, liquids and gases
D. Faster in gases than in liquids and solids.

Answer:

D Watch Video Solution
69. The unit of universal gas constant in S.I. is
A. Calories per degrtee celsius
B. joule per mole
C. $J K^{-1} \mathrm{~mol}^{-1}$
D. joule per k.g.

Answer:

- Watch Video Solution

70. The r.m.s velocity of gas molecules is $300 \mathrm{~ms}^{-1}$ The r.m.s velocity of molecules of gas with twice the molecular weight and half the absolute temperature is
A. $300 m s^{-1}$
B. $600 \mathrm{~ms}^{-1}$
C. $75 m s^{-1}$
D. $150 \mathrm{~ms}^{-1}$

Answer:

D Watch Video Solution

71. If the pressure in a closed vessel is reduced by drawing out some gas, the mean free path of the molecules
A. is decreased
B. is increased
C. remains unchanged
D. increases or decreases according to the
nature of the gas

Answer:

D Watch Video Solution
72. At the same temperature the mean kinetic energies of molecules of hdrogen and oxygen are in the ratio
A. 1:1
B. $1: 16$
C. 8:1
D. $16: 1$

Answer:

- Watch Video Solution

73. Temperature of a gas is a measure of

A. The average kinetic energy of the gaseous molecules
B. The average distance between the molecules of the gas
C.
D. The size of the molecules of the gas.

Answer:

74. If the mass of all molecules of a gas are halved and their speeds doubled then the ratio of initial and final pressure will be
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer:

75. Fill in the Blank:

Boyle's law was discovered by

D Watch Video Solution

76. Fill in the Blank:
${ }^{\wedge} \circ C$ is known as abosolute zero

- Watch Video Solution

77. Fill in the Blank:

Perfect gas equation for one mole is =

D Watch Video Solution
78. Fill in the Blank:

SI unit of universal gas constant is \qquad
(Watch Video Solution

79. Fill in the Blank:

Molecules of a perfect gas behave as perfect spheres.

- Watch Video Solution

80. Fill in the Blank:

At absolute zero, the molecular motion of a gas

81. Fill in the Blank:

$v_{r m s} \propto$

- Watch Video Solution

82. Fill in the Blank:

In a dynamical system in thermal equilibrium,
energy associated with degree of
freedom is
83. What are the different methods of increasing the number of molecular collisions per second in a gas?

D Watch Video Solution

84. For a gas deviation from ideal behaviour is maximum at :
(D) Watch Video Solution
85. The temperature of a gas increases on
heating. Explain it on the basis of kinetic theory of gases.

D Watch Video Solution

86. Obtain the demensional formula for R used
in the ideal gas equation $\mathrm{PV}=\mathrm{RT}$

- Watch Video Solution

87. On what factors does the average kinetic energy of gas molecules depend : Nature of the gas, temperature, volume?

D Watch Video Solution

88. The ratio of vapour densities of two gases
at the same temperature is $8: 9$. Compare the
r.m.s. velocities of their molecules

D Watch Video Solution
89. What is average velocity of the molecules of an ideal gas?

D Watch Video Solution

90. Sometimes a cycle with well inflated tyre left in the sun has its tube burst open. Why?

- Watch Video Solution

91. What are the two factors on which the degrees of freedom of a gas depends?

D Watch Video Solution
92. One mole of a gas at S.T.P. occupies volume

D Watch Video Solution

93. One mole of a gas at S.T.P contains

molecules equal to

\qquad

D Watch Video Solution
94. At high pressure and low temperature the gases do not obey laws.

D Watch Video Solution

95. At what temperature, gas molecules are devoid of all motions?

D Watch Video Solution

96. The volume of a gas sample is increased.

Why does the pressure which is exerted by the gas decreases?

D Watch Video Solution

97. How is cooling related to evaporation?

D Watch Video Solution

98. What do you mean by mean free path of a gas molecule?

D Watch Video Solution

99. How can γ be determined from the number
of degrees of freedom?

- Watch Video Solution

100. Prove that $r^{1}=1+\frac{2}{n}$ where n is number of degrees of freedom.

- Watch Video Solution

101. State Charles' law.

- Watch Video Solution

102. Deduce perfect gas law.

D Watch Video Solution

103. What is kinetic theory of gases ? Give its postulates.

- Watch Video Solution

104. Give qualitative definition of pressure on
the basis of kinetic theory of gases.

- Watch Video Solution

105. Derive expression for pressure exerted by gas.

- Watch Video Solution

106. Derive relation between pressure nd kinetic energy.
107. Give the kinetic Interpretatin of

Temperature.

- Watch Video Solution

108. What is meant by degrees of freedom?

Find degrees of freedom for mono di and triatomic gas molecule.

- Watch Video Solution

109. What is mean free path of a gas molecule?

Show that the mean free path is inversely proportional to the pressure of the gas. Does
the mean free path depend upon the temperature of the gas?

D Watch Video Solution

110. Explain the term Avogadro's number and mention some methods for determination of

Avogadro's number. What is significance of Avogadro's number?

D Watch Video Solution

111. State and explain the law of equipartition of energy of a dyamic system and use it to find the value of the ratio of the two specific heats of a monoatomic, and diatomic and a triatomic gas molecule.
112. R.M.S. velocity of nitrogen molecules at N.T.P. is

- Watch Video Solution

113. Calculate r.m.s velocity of nitrogen molecules at $27^{\circ} C$ and 76 cm of mercury pressure.

- Watch Video Solution

114. 0.014 kg of nitrogen is enclosed in a vessel at a temperature of $27^{\circ} \mathrm{C}$. How much heat has to be transferred to the gas to double the r.m.s velocity of its molecules?

D Watch Video Solution

115. A vessel is filled with a gas at a pressure of

76 cm of mercury at a certain temperature. The mass of the gas is increased by 50% by introducing more gas in the vessel at the
same temperature. Find out the resultant pressure of the gas.

D Watch Video Solution

116. Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be $3 \AA$.
117. A gas has molar heat capacity $C=37.55$
$\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$, in the process PT = constant,

Find the number of degrees of freedom of the molecules of the gas.

- Watch Video Solution

Exercise

1. A gas enclosed in a container is heated up

What is the effect on pressure?
2. At what temperature, gas molecules are devoid of all motions?

- Watch Video Solution

3. Name three gas parameters.

4. Name three gas laws.

D Watch Video Solution

5. Write expression for Boyle's law.

D Watch Video Solution
6. Write expression for Charles's law.
7. Explain with the help of kinetic theory, why pressure of a gas in its container walls rise when volume is reduced?

- Watch Video Solution

8. Prove that kinetic energy of gas is proportional to absolute temperature.

- Watch Video Solution

9. How is the concept of pressure exerted by
the gas explained on the basis of kinetic theory of gases?

D Watch Video Solution

10. Define absolute zero on the basis of kinetic interpretatino of temprature. Explain.

D Watch Video Solution

11. State Boyle's law.

D Watch Video Solution

12. State Charles' law.

D Watch Video Solution
13. Deduce perfect gas law.
14. Give the main postulates of kinetic theory of matter.

- Watch Video Solution

15. How is the concept of pressure exerted by
the gas explained on the basis of kinetic theory of gases?

D Watch Video Solution

16. What is meant by degrees of freedom? Find degrees of freedom for mono di and tri-atomic gas molecule.

D Watch Video Solution

