đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MBD

LAWS OF MOTION

Example

1. How is inertia related to mass of a body?

0
 Watch Video Solution

2. If you jerk a piece of paper under a book quick enough, the book will not move. Why?

- Watch Video Solution

3. If net force acting on a body is zero, then will the body remain necessarily in rest position?

- Watch Video Solution

4. Calculate the mass of a body weighting 100

N . Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$.

D Watch Video Solution
5. If a body is not at rest, the net external force acting on it cannot be zero. is it true or false?

- Watch Video Solution

6. Define one newton.

- Watch Video Solution

7. What is the net force on a cork floating on water?

- Watch Video Solution

8. Prove that if no external force is acting on a body. Its momentum will remain unchanged.
9. If two ends of a spring balance are pulled each by a force of 10 kg . wt . What will be the reading of the balance?

- Watch Video Solution

10. Action and reaction forces do not balance each other. Why?

- Watch Video Solution

11. A meteorite burns in the atmosphere before it reaches the earth's surface. what happens to its momentum?

- Watch Video Solution

12. What is impulsive force?

D Watch Video Solution
13. When a ball is thrown upwards, its momentum first decreases and then increases.

Is conservation of linear momentum violated in this process?

- Watch Video Solution

14. Explain why:- a horse cannot pull a cart and
run in empty space.

D Watch Video Solution
15. Why does a gun recoil when a bullet is fired from the gun ? Explain.

- Watch Video Solution

16. On what factors inertia of a body depends?

D Watch Video Solution

17. Why does an athlete run before taking a high jump ?
18. We slip easily on a rainy day because coefficient of friction

D Watch Video Solution

19. Why a person sitting inside a vehicle is
thrown outwards, when vechile rounds a curve suddenly?
20. How do you account for function of mudguards in vehicles?

- Watch Video Solution

21. What is friction?

- Watch Video Solution

22. What is the unit of coefficient of limiting

friction?

- Watch Video Solution

23. Define angle of friction.

- Watch Video Solution

24. Why are tyres made circular?

- Watch Video Solution

25. Can we get off a frictionless horizontal surface by jumping?

D Watch Video Solution
26. Explain how friction helps in walking.

D Watch Video Solution

27. It is difficult to move a cycle along a road with its brakes on. Why?

- Watch Video Solution

28. Is a large brake on a bicycle wheel more effective than small one ? Explain.

D Watch Video Solution

29. Name the two types of dynamic (kinetic) friction.

- Watch Video Solution

30. What is the cause of friction? In which case is it maximum?

D Watch Video Solution

31. How does coefficient of friction is altered when the weight of body is doubled?

- Watch Video Solution

32. Friction is a self- adjusting force. Is it correct?

D Watch Video Solution
33. How friction is reduced in fast moving vehicle?

D Watch Video Solution
34. Automobile tyres have generally irregular projections over their surfaces. Why?

D Watch Video Solution
35. Why are rockets given conical shape?

D Watch Video Solution

36. What is the angular velocity of the hour hand of a clock?

- Watch Video Solution

37. Why skidding takes place on a rainy day along a curved path?

D Watch Video Solution

38. Give an example when a body moving with
unifrom speed has acceleration?

- Watch Video Solution

39. Name the physical quantities which remains constant for a particle moving along a circular path in a horizontal plane in uniform motion.

D Watch Video Solution

40. What provides the centripetal force to a
caar taking turn on a level road?
41. Define centrifugal force.

D Watch Video Solution

42. What provides the centripetal force to a satellite revolving around the earth?

- Watch Video Solution

43. What is the relation between coefficient of
friction and angle of repose?
44. What is the unit of coefficient of limiting friction?

D Watch Video Solution

45. Out of satic friction, limiting friction and dynamic friction, which is largest?

D Watch Video Solution
46. Give the magnitude and direction of the net force acting on:- a drop of rain falling down with a constant speed.

D Watch Video Solution

47. Give the magnitude and direction of the net force acting on:- a cork of mass 10 g floating on water.
48. Give the magnitude and direction of the net force acting on:- a kite skillfully held stationary in the sky.

D Watch Video Solution

49. Give the magnitude and direction of the net force acting on:- a car moving with a constant velocity of $30 \mathrm{~km} / \mathrm{h}$ on a rough road.
50. Give the magnitude and direction of the net force acting on:- a high-speed electron in space far from all material objects, and free of electric and magnetic fields.

- Watch Video Solution

51. A pebble of mass 0.05 kg is thrown vertically upwards. Give the direction and magnitude of the net force on the pebble:during its upward motion.
52. A pebble of mass 0.07 kg is thrown vertically upwards. Give the direction and magnitude of the net force on the pebble:- at the highest point where it is momentarily at rest. Do your answers change if the pebble was thrown at an angle of 45° with the horizontal direction? Ignore air resistance.
53. Give the magnitude and direction of the net force acting on a stone of mass 0.1kg:- just after it is dropped from the window of a stationary train, Neglect air resistance throughout.

D Watch Video Solution

54. Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg :- just after it is dropped from the window of a train
running at a constant velocity of $36 \mathrm{~km} / \mathrm{h}$, Neglect air resistance throughout.

D Watch Video Solution

55. Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg :- just after it is dropped from the window of a train accelerating with $1 m s^{-2}$, Neglect air resistance throughout.

- Watch Video Solution

56. Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg :lying on the floor of a train which is accelerating with $1 m s^{-2}$, the stone being at rest relative to the train.Neglect air resistance throughout.

- Watch Video Solution

57. One end of a string of length t is connected to a particle of mass m and the other to a small peg on a smooth horizontal
table. If the particle moves in a circle with speed v the net force on the particle (directed towards the centre) is : T is the tension in the string. [Choose the correct alternative].

D Watch Video Solution

58. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 m s^{-1}$. How long does the body take to stop ?
59. A constant force acting on a body of mass
3.0 kg changes its speed from $2.0 \mathrm{~ms}^{-1}$ to
$3.5 \mathrm{~ms}^{-1}$ in 25 s . The direction of the motion
of the body remains unchanged. What is the magnitude and direction of the force ?

- Watch Video Solution

60. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N . Give the
magnitude and direction of the acceleration of the body.

D Watch Video Solution

61. The driver of a three-wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child. What is the average retarding force on the vehicle ? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg .
62. A rocket with a lift-off mass $20,000 \mathrm{~kg}$ is
blasted upwards with an initial acceleration of
$5.0 \mathrm{~ms}^{-2}$. Calculate the initial thrust (force) of the blast.

- Watch Video Solution

63. A body of mass 0.40 kg moving initially with a constant speed of $10 \mathrm{~ms}^{-1}$ to the north
is subject to a constant force of 8.0 N directed
towards the south for 30 s . Take the instant
the force is applied to be $t=0$, the position of the body at that time to be $x=0$, and predict its position at $t=-5 \mathrm{~s}, 25 \mathrm{~s}, 100 \mathrm{~s}$.

D Watch Video Solution

64. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is
dropped by a person standing on the top of
the truck (6 m high from the ground). What are the:- velocity. (Neglect air resistance.)

Watch Video Solution

65. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is dropped by a person standing on the top of the truck (6 m high from the ground). What are the:- acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$?
(Neglect air resistance.)

- Watch Video Solution

66. A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is set into oscillation. The speed of the bob at its mean
position is $1 m s^{-1}$. What is the trajectory of the bob if the string is cut when the bob is:- at one of its extreme positions,

D Watch Video Solution

67. A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is set into
oscillation. The speed of the bob at its mean position is $1 m s^{-2}$. What is the trajectory of the bob if the string is cut when the bob is:- at its mean position.

- Watch Video Solution

68. A man of mass 70 kg stands on a weighing
scale in a lift which is moving :- upwards with a uniform speed of $10 \mathrm{~ms}^{-1}$, what would be the reading on scale?
69. A man of mass 70 kg stands on a weighing scale in a lift which is moving :- downwards with a uniform acceleration of $5 m s^{-2}$,

- Watch Video Solution

70. A man weighs 70 kg . He stands on a weighing scale in a lift which is moving?
upwards with a uniform acceleration of $5 m s^{-2}$.
71. A man of mass 70 kg stands on a weighing scale in a lift which is moving :- What would be the reading if the lift mechanism failed and it hurtled down freely under gravity ?

D Watch Video Solution

72. The fig shows the position the positiontime graph of a particle of mass 4 kg . What is the

Force on the particle for $\mathrm{t}<0, \mathrm{t}>4 \mathrm{~s}$, impulse 0
$<\mathrm{t}<4 \mathrm{~s}$?

D Watch Video Solution
73. The fig shows the position the position-
time graph of a particle of mass 4 kg . What is
the

Impulse at $\mathrm{t}=0$ and $\mathrm{t}=4 \mathrm{~s}$: (consider onedimensional motion only).

(D) Watch Video Solution

74. Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal surface are tied to the ends of a light string, a
horizontal force $\mathrm{F}=600 \mathrm{~N}$ is applied to:- B along the direction of string. What is the tension in the string in each case?

- Watch Video Solution

75. Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal
surface are tied to the ends of a light string, a horizontal force $F=600 \mathrm{~N}$ is applied to:-B along the direction of string. What is the tension in the string in each case?

Watch Video Solution

76. Two masses 8 kg and 12 kg are connected at the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses, and the tension in the string when the masses are released.

D Watch Video Solution

77. A nucleus is at rest in the laboratory frame of reference. Show that if it disintegrates into
two smaller nuclei the products must move in opposite directions.

D Watch Video Solution

78. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed
$6 m s^{-1}$ collide and rebound with the same
speed. What is the impulse imparted to each ball due to the other?

D Watch Video Solution

79. A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, what is the recoil speed of the gun?

D Watch Video Solution

80. A batsman deflects a ball by an angle of
45° without changing its initial speed which is
equal to $54 k m / h$. What is the impulse imparted to the ball ? (Mass of the ball is 0.15 kg.)
81. A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius 1.5 m with a speed of $40 \mathrm{rev} . / \mathrm{min}$ in a horizontal plane. What is the tension in the string ? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N ?

D Watch Video Solution

82. If, in Exercise 5.21, the speed of the stone is
increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory
of the stone after the string breaks :- the stone moves radially outwards.

- Watch Video Solution

83. If, in Exercise 5.21, the speed of the stone is
increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory of the stone after the string breaks :- the stone flies off tangentially from the instant the string breaks.

D Watch Video Solution

84. If, in Exercise 5.21, the speed of the stone is
increased beyond the maximum permissible
value, and the string breaks suddenly, which of
the following correctly describes the trajectory
of the stone after the string breaks :- the
stone flies off at an angle with the tangent whose magnitude depends on the speed of the particle?

D Watch Video Solution

85. Explain why:- a horse cannot pull a cart and run in empty space.

D Watch Video Solution
86. Explain why:- passengers are thrown
forward from their seats when a speeding bus
stops suddenly.

- Watch Video Solution

87. Explain why:- it is easier to pull a lawn mower than to push it.

D Watch Video Solution
88. Explain why:- a cricketer moves his hands backwards while holding a catch.

D Watch Video Solution

89. Figure 5.17 shows the position-time graph of a body of mass 0.04 kg . Suggest a suitable physical context for this motion. What is the time between two consecutive impulses received by the body? What is the magnitude
of each impulse?

D Watch Video Solution

90. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and the passengers weigh 300 kg . Give the magnitude and direction of the:- force on the floor by the crew and passengers,
91. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the:- action of the rotor of the helicopter on the surrounding air,

D Watch Video Solution

92. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the:- action of the rotor of the helicopter on the surrounding air,

D Watch Video Solution

93. A stream of water flowing horizontally with
a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of cross-sectional area $10^{-2} m^{2}$, and hits a vertical wall nearby. What is the force exerted on the wall by the impact of water, assuming it does not rebound?
94. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m Give the magnitude and direction of:- the force on the 7th coin (counted from the bottom) due to all the coins on its top,

D Watch Video Solution

95. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m Give
the magnitude and direction of:- the force on
the 7th coin by the eighth coin,

D Watch Video Solution

96. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m Give
the magnitude and direction of:- the reaction of the 6th coin on the 7th coin.

- Watch Video Solution

97. An aircraft executes a horizontal loop at a speed of $720 \mathrm{~km} / \mathrm{h}$ with its wings banked at 15°. What is the radius of the loop?

D Watch Video Solution

98. A train runs along an unbanked circular track of radius 30 m at a speed of $54 \mathrm{~km} / \mathrm{h}$.

The mass of the train is $10^{6} \mathrm{~kg}$. What provides
the centripetal force required for this purpose

- Hie engine or the rails ? What is the angle
of banking required to prevent wearing out of the rail ?

D Watch Video Solution

99. A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in Fig. 5.19.

What is the action on the floor by the man in
the two cases ? If the floor yields to a normal
force of 700 N , which mode should the man adopt to lift the block without the floor
yielding?

- Watch Video Solution

100. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension
of 600 N . in which of the following cases will
the rope break: the monkey:-

D Watch Video Solution
101. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension
of 600 N . in which of the following cases will the rope break: the monkey:- climbs down with an acceleration of $4 m s^{-2,}$

- Watch Video Solution

102. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension of 600 N . in which of the following cases will
the rope break: the monkey:-

- Watch Video Solution

103. A monkey of mass 40 kg climbs on a rope
(Fig. 5.20) which can stand a maximum tension
of 600 N . in which of the following cases will
the rope break: the monkey:-

104. Two bodies A and B of masses 5 kg and 10 kg in contact with each other rest on a table against a rigid wall (Fig. 5.21). The coefficient of
friction between the bodies and the table is
0.15. A force of 200 N is applied horizontally to
A. What are :- the reaction of the partition.

- Watch Video Solution

105. Two bodies A and B of masses 5 kg and 10
kg in contact with each other rest on a table against a rigid wall (Fig. 5.21). The coefficient of friction between the bodies and the table is
0.15 . A force of 200 N is applied horizontally to
A. What are :- the reaction of the partition.

- Watch Video Solution

106. A block of mass 15 kg is placed on a long trolley. The coefficient of friction between the block and the trolley is 0.18 . The trolley
accelerate from rest with $0.5 m s^{-2}$ for 20 s and then moves with unifrom velocity. Discuss the motion of the block as viewd by an observer with the trolley.

- Watch Video Solution

107. A block of mass 15 kg is placed on a long trolley. The coefficient of friction between the block and the trolley is 0.18 . The trolley accelerate from rest with $0.5 \mathrm{~ms}^{-2}$ for 20 s and then moves with unifrom velocity. Discuss
the motion of the block as viewd by an observer with the trolley.

- Watch Video Solution

108. The rear side of a truck is open and a box of 40 kg mass is placed 5 m away from the open end as shown. The coefficient of friction between the box and the surface below its is
0.15. On a straight road, the truck starts from rest and accelerates with $2 m s^{-2}$. At what distance from the starting point does the box
fall off the truck ?/ (Ignore the size of the box).

- Watch Video Solution

109. A disc revolves with a spped of $33\left(\frac{1}{3}\right) r e v / \mathrm{min}$, and has a radius of 15 cm .
Two coins are placed at 4 cm and 14 cm away
from the centre the record. If the co-effcient of
friction between the coins and the record is
0.15 , which of the coins will revolve with the record?

D Watch Video Solution

110. You may have seen in a circus a motorcyclist driving in vertical loops inside a 'death- well' (a hollow spherical chamber with holes, so the spectators can watch from outside). Explain clearly why the motorcyclist does not drop down when he is at the uppermost point, with no support from below.

What is the minimum speed required at the uppermost position to perform a vertical loop if the radius of the chamber is 25 m ?

D Watch Video Solution

111. A 70 kg man stands in contact against the ineer wall of a hollow cylindrical drum of radius 3 m rotating about its vertical axis with

200 rev / min. The coeffcient of friction between the wall and his clothing is 0.15 . What is the minimum rotational speed of the
cylinder to enable the man of remain stuck to
the wall (without falling) when the floor ids
suddenly removed?

D Watch Video Solution

112. A thin circular loop of radius R rotates
about its vertical diameter with an angular
frequency ω. Show that a small bead on the
wire loop rem ains at its lowermost point for
$\omega \sqrt{\frac{g}{R}}$ What is the angle made by the radius vector joining the centre to the bead with the
vertical downward direction for $\omega=\sqrt{2 \frac{g}{R}}$? neglect friction.

- Watch Video Solution

113. A ball is travelling with unifrom translatory motion. This means that
A. it is at rest
B. the path can be a straight line or circular
and the ball travels with uniform speed.
C. all parts of the ball have the same
velocity 9magnitude and direction) and
the velocity is constant.
D. the centre of the ball moves with
constannt velocity and ball spins about
its centre uniformly.

Answer:

D Watch Video Solution

114. A meter scale is momving with uniform velocity. this implies.
A. the force acting on the scale is zero, but
a torque about the centre of mass can
act on the scale.
B. the force acting on the scale is zero and
the torque acting about centre of mass
of the scale is also zero.
C. the total force acting on it need not be zero but the torque on it is zero.

D. neither the force nor the torque need to

be zero.

Answer:

D Watch Video Solution

115. A cricket ball of mass 150 g has an initial velocity $\vec{u}=(3 \hat{i}+4 \hat{j}) m s^{-1}$ and a finaal velocity $\quad \vec{v}=-(3 \hat{i}+4 \hat{t} j) m s^{-1} \quad$ after
being hit. The change in momentum (final momentum-initial momentum) is (in kgms^{-1})
A. zero
B. $-(0.45 \hat{i}+0.6 \hat{j})$
C. $-(0.9 \hat{i}+1.2 \hat{j})$
D. $-5(\hat{i}+\hat{j})$.

Answer:

D Watch Video Solution

116. In the previous problem, if 15.0 cm of water and spirit each are further poured into the respective arms of the tube, what is the difference in the levels of mercury in the two arms ? (Specific gravity of mercury $=13.6$)
A. (a) Zero
B. (b) $0.75 \mathrm{kgms}^{-1}$
C. $1.5 \mathrm{kgms}^{-1}$
D. $14 \mathrm{kgms}^{-1}$

Answer:
117. Conservation of momentum in a collisino between particles can be understood from
A. conservation of energy
B. Newton's first law only
C. Newton's second law only
D. both Newton's second and thrid law

Answer:
118. A hockey player is moving northward and
suddenly turns westward with the same speed
to avoid an opponent. The force that acts on
the player is
A. frictional force along westward
B. muscle force along southward
C. frictional force along south-west
D. muscle force along south-west.

Answer:

D Watch Video Solution

119. A body of mass 2 kg travels according to
the $\quad \operatorname{law} x(t)=p t+q t^{2}+r t^{3} \quad$ where
$p=3 m s^{-1} \mathrm{q}=4 \mathrm{~ms}^{\wedge}-2$ and $\mathrm{r}=5 \mathrm{~ms}^{\wedge}-3$. the
force acting on the body at $t=2$ seconds is
A. 136 N
B. 134 N
C. 158 N

D. 68 N

Answer:

- Watch Video Solution

120. A body with mass 5 kg is acted upon by a force $F=(-3 \hat{i}+4 \hat{j}) \mathrm{N}$. if its initial velocty at $\mathrm{t}=0$ is $\mathrm{v}=(6 \hat{i}-12 \hat{j}) m s^{-1}$, the time at which it will just have a velocity along the y axis is
A. never
B. 10 s
C. 2 s
D. 15 s

Answer:

D Watch Video Solution

121. A car of mass m starts from rest and acquires a velocity along east $\vec{v}=v \hat{i}(v>0)$
in two seconds. Assuming the car moves with
uniform acceleration, the force exerted on the car is
A. (a) $m v / 2$ eastward and is exerted by the car engine.
B. (b) $m \frac{v}{2}$ eastward and is due to the
friction on the tyres exerted by the road.
C. (c) more than $m \frac{v}{2}$ eastward exerted due
to the engine and overcomes the friction
of road.
D. (d) $m \frac{v}{2}$ exerted by the engine.

Answer:

D Watch Video Solution

122. The motion of a particle of mass m is given by $\mathrm{x}=0$ for $\mathrm{t}<0 \mathrm{~s}, \mathrm{x}(\mathrm{t})=\mathrm{A} \sin 4 \pi \mathrm{t}$ for 0
$<\mathrm{t}<(1 / 4) \mathrm{s}(\mathrm{A}>0)$, and $\mathrm{x}=0$ for $\mathrm{t}>(1 / 4) \mathrm{s}$. which
of the following statements is true?/
A. The force at $t=(1 / 8) \mathrm{s}$ on the particle is $-16 \pi^{2}$ A m.
B. The particle is acted upon by on impulse of magnitude $4 \pi^{2} \mathrm{~A}$ m at $\mathrm{t}=0 \mathrm{~s}$ aand $\mathrm{t}=$
(1/4) s.
C. The particle is not acted upon by any
force
D. The particle is not acted upon by a constant force.

Answer:

123. Shown in the figure, the co-efficient of friction between the flor and the body B is 0.1.

The co-efficient of friction between the bodie B
and A is 0.2 A force F is applied as shwon on B.

The mas of A is $m / 2$ and of b is m. Which of the
following statements are true?

A. The bodies will move together if $F=0.25$
mg.
B. the body will slip with respect to B if $F=$ 0.5 mg .
C. the bodies will move together if $F=0.5$
mg.
D. the bodies will be at rest if $\mathrm{F}=0.1 \mathrm{mg}$.

Answer:

D Watch Video Solution

124. Mass m_{1} moves on a slope making an angle θ with the horizontal and is attached to mass m_{2} by a string passing over a frictionless
pulley as shown in the figre. The co-efficient of
frition between m_{1} and the slopping surfaace
is μ. Which of the following statements are

true?

A. if $m_{2}>m_{1} \sin \theta$, the boyd will move up
the plane.
B. If $m_{-} 2>m_{1}\left(\sin\right.$ theta $+m u \cos$ theta) ${ }^{\prime}$,
the boyd will move up the plane
C. If $m_{2}<m_{1}(\sin \theta+\mu \cos \theta)$, the body
will move up the plane.
D. If $m_{2}<m_{1}(\sin \theta-\mu \cos \theta)$, the body
will move down the plane.

Answer:

125. In the figure, a body A of mass m slides on
plane inclined at angle θ_{1} to the horizontal
and μ_{1} is the coefficient of friction between A
and the plane. A is connected by a light string
passing over a fictionless pulley to another body B , also of mass m , sliding on a frictionless plane inclined at angle θ_{2} to the horizontal which of the following statements
are true ?

A. A will never move up the plane.
B. A will just start moving up the plane
when $\mu=\frac{\sin \theta_{2}-\sin \theta_{1}}{\cos \theta_{1}}$
C. For A to move up the plane, θ_{2} must
always be greater than θ_{1}.

D. B will always slide down with constant

speed.

Answer:

D Watch Video Solution

126. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed $6 m s^{-1}$ collide and rebound with the same speed. What is the impulse imparted to each ball due to the other?
A. The impulse imparted to each ball is
$0.25 \mathrm{kgms}^{-1}$ an the force on each ball is

250 N
B. The impulse imparted to each ball is
$0.25 \mathrm{kgms}^{-1}$ and the force exerted on
each ball is $25 \times 10^{-5} N$
C. The impulse imparted to each ball is 0.5

Ns.
D. The impulse and the force on each ball
are equal in magnitude and opposite in

direction.

Answer:

D Watch Video Solution

127. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N . Give the magnitude and direction of the acceleration of the body.
A. $1 m s^{-2}$ at an angle of $\tan ^{\wedge}-1(4 / 3)$ w.r.t 6 N force.
B. $0.2 m s^{-2}$ at an angle of
$\tan ^{-1}\left(\frac{4}{3}\right) w \cdot r . t 6$ force.
C. $1 m s^{-2}$ at an angle of $\tan ^{\wedge}-1(3 / 4)$ w..t 8 N
force.

$$
\begin{aligned}
& \text { D. } 0.2 m s^{-2} \text { at an angle of } \\
& \tan ^{-1}\left(\frac{3}{4}\right) w \cdot r . t 8 N \text { force. }
\end{aligned}
$$

Answer:

128. A girl riding a bicycle along a straight road with a speed of $5 m s^{-1}$ throws a stone of mass 0.5 kg which has a speed of $15 \mathrm{~ms}^{-1}$ with respect to the ground along her direction of motion. The mass of the girl and bicyle is 50 kg . Does the speed of the bicycle change after the stone is thrown? What is the change in speed, if so?

- Watch Video Solution

129. A man of mass 70 kg stands on a weighing scale in a lift which is moving :- upwards with a uniform acceleration of $5 \mathrm{~ms}^{-2}$. What would be the readings on the scale in each case?

D Watch Video Solution

130. The position time graph of a body of mass

2 kg is as given in the figure. What iws the
impulse on the body at $t=0 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$.

(D) Watch Video Solution

131. A person driving a car suddenlyapplies the
brakes on seeing a child on the road ahead. if
he is not wering seat belt, he falls forward and
hits his head against the steering wheel. Why?

D Watch Video Solution

132. The velocity of a body of mass 2 kg as a function of t is given by $\vec{v}(t)=2 t \hat{i}+t^{2} \hat{j}$.

Find the momentum and the force acting on it, at time $t=2 s$.

D Watch Video Solution

133. A block placed on a rough horizontal
surface is pulled by a horizontal force F. Let f
be the force applied by the rough surface on
the block. Plot a graph of f versus F.

- Watch Video Solution

134. Why are porcelain objects wrapped in paper or straw before packing for transportation?

D Watch Video Solution

135. Why does a child feel more pain when she
falls down on a hard cement floor, then when
she falls on the soft muddy ground in the garden?

D Watch Video Solution
136. A woman throws an object of mass 500 g with a speed of $25 m s^{-1}$.

What is the impulse imparted to the object?

D Watch Video Solution

137. A woman throws an object of mass 500 g
with a speed of $25 m s^{-1}$.

If the object hits a wall and rebounds with half
the original speed, what is the change in momentum of the object?
138. Why are mountain roads generally made winding upwards rather than going straight up?

D Watch Video Solution

139. A mass of 2 kg is suspended with thread
$A B$. Thread CD of the same type is attached to
the other end of 2 kg mass. Lower thread is pulled gradually. harder and harder in the
downward direction so as to apply force on

AB. Which of the threds will break and why?

140. A mass of 2 kg is suspended with thread

AB. Thread CD of the same type is attached to the other end of 2 kg mass. Lower thread is pulled gradually. harder and harder in the downward direction so as to apply force on

AB. In the above given problem if the lower thread is pulled with a jerk, what happens?

- Watch Video Solution

141. Two masses 5 kg and 3 kg are suspended with the help of massless inextensible strins
as shown in the figure. Calculate T_{1} and T_{2}
when whole system is going upwards with
acceleration $=2 m s^{2}\left(\right.$ use $\left.g=9.8 m s^{-2}\right)$

142. Block A of wiehgt 100 N resta on a frictionless inclined plane of slope angle
`30^@. A flexible cod attached to A passes over
a frictionless pulley and is connected to block
B of weight W. Find the weight W for which
the system is in equilibrium.

D Watch Video Solution
143. A block f mass M is held against a rough vertical wall by pressing it with a finger. If the coefficient of friction between the block and the wall is μ and the acceleration due to gravity is g. calculate the minimum force required to be applied by the finger to hold the block against the wall?

D Watch Video Solution

144. A 100 kg gun fires a ball of 1 kg horizontally from a cliff of height 500 m . It
falls on the ground at a distance of 400 m
from the bottom of the cliff. Find the recoil velocity of the gun. (acceleration due to gravity $=10 m s^{-2}$)

- Watch Video Solution

145. In figure. $(x, t),(y, t)$ diagram of a particle in

2-dimensions.

If the particle has a mass of 500 g . Find the force (direction and magnitude) acting on the particle.

- Watch Video Solution

146. A person in an elevator accelerating upwards with an acceleration of $2 \mathrm{~ms}^{-2}$,
tosses a coin vertically upwards with a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$. After how much time will the coin fall back into his hand? $\left(g=10 m s^{-2}\right)$

D Watch Video Solution

147. These are three forces F_{1}, F_{2}, F_{3} acting on a body, all acting on a point P on the body. the body is found to move with uniform speed. Show that te forces are coplanar.
148. These are three forces F_{1}, F_{2}, F_{3} acting on a body, all acting on a point P on the body. the body is found to move with uniform speed.

Show that the torque acting on the body about any point due to these three forces is zero.

D Watch Video Solution

149. When a body slides down from rest along
a smooth inclined plane making anangle of
45° with the horizontal, it takes time T . when
the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to take time pT , where p is some number greater than 1. Calculate the co-efficient of friction between the body and the rough plane.

D Watch Video Solution

150. In figure shows that $\left(v_{x}, t\right)$, and $\left(v_{y}, t\right)$
for a body unit mass. Find the force as a

function of tiime.

- Watch Video Solution

151. The displacement vector of a partical of mass m is given by
$\vec{r}(t)=\hat{i} A \cos \omega t+\hat{j} B \sin \omega t$.
Show that the trajectory is an ellipse.

D Watch Video Solution

152. The displacement vector of a partical of mass m is given by
$\vec{r}(t)=\hat{i} A \cos \omega t+\hat{j} B \sin \omega t$.
Show that $\vec{F}=-m \omega^{2} \vec{r}$
153. A cricket bowler releases the ball in two different ways
(a) giving it only horizontal velocity and
(b) giving it horizontal velocity and a small downward velocity.

The speed v_{s} at the time of release is the same
. Both are released at a height H from the ground . which one will have greater speed when the ball hits the ground ? Neglect air resistance.
154. A cricket bowler releases tha ball in two different ways
giving it horizontal velocity and a small downward velocity and the speed v_{s} at the time of release is the same. Both are relased at a height H from the ground. Which one will have greater speed when the ball hits the ground? Neglect air resistance.

D Watch Video Solution

155. There are four forces acting at a point P produced by strings as show in the figure, which is at rest. The forces F_{1} and F_{2} are

D Watch Video Solution
156. A rectangular box lies on a rough incli ned
surface. The co-efficient of friction between
the surface and the box is μ. Let the mass of
the box is be m.

At what angle of inclination θ of the plane to
the horizontal will the box just start to slide down the plane?

- Watch Video Solution

157. A rectangular box lies on a rough inclined
surface at θ. The co-efficient of friction
between the surface and the box is μ. Let the mass of the box is m.

What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $\alpha>\theta$?

D Watch Video Solution

158. A rectangular box lies on a rough incli ned
surface. The co-efficient of friction between
the surface and the box is μ. Let the mass of
the box is be m.

What is the force needed to be applied upwards along the plane to make the box either remains stationary or just move up with unifrom speed?

Watch Video Solution

159. A rectangular box lies on a rough incli ned
surface. The co-efficient of friction between
the surface and the box is μ. Let the mass of
the box is be m.

What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration α ?

D Watch Video Solution

160. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the:- force on the floor by the crew and passengers,

D Watch Video Solution

161. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the
magnitude and direction of the:- action of the rotor of the helicopter on the surrounding air,

D Watch Video Solution

162. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the:- force on the floor by the crew and passengers,

D Watch Video Solution

163. When a body is stationary
A. there is no force acting on it
B. the forces acting on it are not in contact
with it
C. the forces acting on it balance each oter

D. the body is in vaccum.

Answer:

164. A shell in flight explodes into four unequal parts. Which of the following is conserved?
A. Momentum and kinetic energy
B. Momentum
C. Kinetic energy
D. Neither momentum nor kinetic energy.

Answer:

D Watch Video Solution

165. A man sitting in a train which is in motion
is facing the engine. He tosses a coin up. the coin falls behind him. The train is :
A. moving forward with acceleration
B. moving forward with uniform speed
C. moving backward wth uniform speed
D. moving backward with acceleration

Answer:

D Watch Video Solution
166. A stretching force of 1 N is applied at one end of a spring balance and an equal
sretching force is applied at the other end at the same time. The reading on the balance will be
A. 0 N
B. 1 N
C. 2 N
D. 0.5 N
167. A bird weights 2 kg and is inside a cage of

1 kg . If it starts flying then what is weight of bird and cage assembly?
A. 1.5 kg
B. 2.5 kg
C. 3 kg
D. 4 kg
168. A man weighs 80 kg . He stands on a weighing scale in the lift, which is moving upward with a uniform acceleration of $5 \mathrm{~ms}^{-2}$ what whould be the reading on the scale?

$$
\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right) .
$$

A. Zero
B. 400 N
C. 800 N

D. 1200 N

Answer:

D Watch Video Solution

169. Three forces start acting simultaneously on a particle moving with velocity \vec{v}. There
forces are represented in magntiude and direction y three sides of a triangle taken in the same order. The particle will nw move with a velocity
A. less than \vec{v}
B. more than \vec{v}
C. \vec{v} only
D. cannot say

Answer:

D Watch Video Solution

170. Air is thrown on the sail of a stationary
boat by an electric fan kept on it. The boat will
A. remain stationary
B. start moving in the direction in which air is blown.
C. start moving in the direction opposite to
that in which air in blown.

D. start moving with uniform acceleration.

Answer:

D Watch Video Solution

171. Brakes of very small contact area are not
used although friction is independent of area
because friction
A. resists motion
B. causes wear and tear
C. depends upo nature of materials
D. operating in this case is sliding friction.

Answer:

D Watch Video Solution
172. Why are tyres made circular?
A. less material is used
B. rolling friction is less than sliding
friction
C. it is easier to inflate them
D. it is easier to deflate them

Answer:

173. Proper inflation of tyres saves fuel. this is because:
A. contact area is increased
B. contact area is decreased
C. normal reaction is reduced
D. normal reaction is increased

Answer:

D Watch Video Solution

174. Aeroplanes jets etc. are stremlined to reduce
A. dynamic friction
B. sliding frictioni
C. rolling friction
D. fluid friction

Answer:

D Watch Video Solution
175. A horse pulls a cart harder during the first
few steps because.
A. limiting friction is higher than kinetic
friction
B. kinetic friction is higher than limiting
friction
C. sliding friction is higher than rolling
friction
D. frictional forces stops acting after few
steps.

Answer:

D Watch Video Solution

176. A box is placed on an inlcined plane and
has to be pushed down. The angle of inlcination is
A. equal angle of friction
B. more than angle of friction
C. equal to angle of friction
D. less than angle of repose

Answer: less thaan the angle of repose.

D Watch Video Solution

177. A stretching force of 1 N is applied at one end of a spring balance and an equal
sretching force is applied at the other end at the same time. The reading on the balance will be
A. its kinetic energy will go on increasing
its kinetic energy will go on decreasing

B. kinetic energy will remains constant

C. centripetal force will do work on it.
D.

Answer:

D Watch Video Solution
178. Fill in the blanks:

Newton's __ law is te real law of motion.
179. Fill in the blanks:

Spark coming out of a grinding stone is the example is \qquad

- Watch Video Solution

180. Fill in the blanks:

An __ force is required to keep a body in
uniform circular motion.
(Watch Video Solution

181. Fill in the blanks:

$1 \mathrm{~kg} \mathrm{f}=\ldots \mathrm{N}$.

(Watch Video Solution

182. Fill in the blanks:

Mathamaticlly, Newton's third law of motion is
given by

- Watch Video Solution

183. What is force ? Give its units.

D Watch Video Solution

184. What is inertia?

- Watch Video Solution

185. Are Newton's first law of motion and

Galileo's law on inertia different?
186. What is linear momentum ?

D Watch Video Solution

187. What is law of conservation of momentum

?

D Watch Video Solution
188. What is the concept of inertia mass?

- Watch Video Solution

189. Why does an athlete run before taking a high jump ?

D Watch Video Solution

190. If we shake branches of a fruit tree, the fruits fall. Explain.
191. If a ball is thrown up in a moving train, it comes back to the sme place, why?

- Watch Video Solution

192. What is the cause of friction? In which
case is it maximum?

- Watch Video Solution

193. How does coefficient of friction is altered when the weight of body is doubled?

D Watch Video Solution
194. In which direction the force of friction acts?

D Watch Video Solution
195. Explain why:- a horse cannot pull a cart and run in empty space.

D Watch Video Solution

196. Since action and reaction are always equal in magntiude and opposite in direction, how can anything ever be accelerated?

D Watch Video Solution

197. A body is moving such that its linear momentum remains constant. Is the body in equilibrium?

D Watch Video Solution

198. It is difficult to move a cycle along a road with its brakes on. Why?

D Watch Video Solution
199. Carts with rubber wheels are easier to ply
than those with iron wheels. Why?

D Watch Video Solution
200. Why are tyres made circular?

- Watch Video Solution

201. What is centripetal force?
202. Why is a curved road banked on the outer side?/

D Watch Video Solution

203. Friction is a self- adjusting force. Is it

correct?

D Watch Video Solution
204. How friction is reduced in fast moving vehicle?

D Watch Video Solution
205. The quantity of motion contained in a body is called

- Watch Video Solution

206. One newton is equal to

- Watch Video Solution

207. The product of mass of a body and its acceleration is called

- Watch Video Solution

208. Newton's second law gives the measure of
the _..

- Watch Video Solution

209. The product of average force and time for

 which the force acts is called
D Watch Video Solution

210. Action and reaction are always ___ and
\qquad

- Watch Video Solution

211. Newton's second law gives the measure of
the \qquad

D Watch Video Solution
212. For swimming, we use Newton's ___ law of
motion.

D Watch Video Solution
213. Bodies of larger mass need ___ iniital effort to put them in motion.

D Watch Video Solution
214. The friction between two surfaces __, when the surfaces are made highly smooth.

D Watch Video Solution

215. The static friction ___ on the nature of surfaces of the two bodies.

D Watch Video Solution
216. Are Newton's first law of motion and

Galileo's law on inertia different?

- Watch Video Solution

217. By which other name the first law of motion is known ?

- Watch Video Solution

218. Is linear momentum a scalar or a vector quantity?

D Watch Video Solution
219. Why does a passenger fall forward when
he alights from the moving bus ?

- Watch Video Solution

220. Bodies of larger mass need ___ iniital
effort to put them in motion.

- Watch Video Solution

221. Show that a heavier body having the same
velocity as that of lighter body, possesses
more momentum.

D Watch Video Solution

222. A heavier and lighter body have the same
momentum. Show that lighter body possesses
more velocity.
223. Heavier the rifle, lesser the kick. Why?

- Watch Video Solution

224. When a ball is thrown upwards, its momentum first decreases and then increases.

Is conservation of linear momentum violated
in this process?

- Watch Video Solution

225. A horse pulls a cart harder during the first
few steps because.

- Watch Video Solution

226. Explain why:- it is easier to pull a lawn mower than to push it.

D Watch Video Solution
227. Why is limiting friction greater than kinetic friction?

D Watch Video Solution
228. Polishing beyond certain limit may increase friction between the surfaces. Explain.

- Watch Video Solution

229. Define angle of friction.

- Watch Video Solution

230. Derive an expression for aceleration of a bdy moving down an inclined plane.

- Watch Video Solution

231. What is the need of banking a circular road?

232. Explain the need for banking of tracks.

D Watch Video Solution

233. Define the term inertia. Explain three types of inertia with examples.

D Watch Video Solution

234. State and explain the Newton's First Law of Motion.
235. What is Newton's second law of motion?

How can the force be measured using second law of motion?

- Watch Video Solution

236. What are different units of force and how are these related to each other?

237. Discuss consequences of Newton's second

 law of motion.D Watch Video Solution
238. State and explain Newton's third Law of motion.

- Watch Video Solution

239. Determine aparent weight of a person in

a lift

when lift is at rest

D Watch Video Solution

240. Determine aparent weight of a person in

a lift

when lift is moving upward with unifrom

velocity

241. Determine aparent weight of a person in a lift
when lift is moving downward with uniform velocity.

D Watch Video Solution

242. Determine aparent weight of a person in a lift
lift is moving up with acceleration a
243. Determine aparent weight of a person in a lift
when lift to moving down with acceleration a,

D Watch Video Solution

244. Determine aparent weight of a person in
a lift
when lift is moving down with $\mathrm{a}=\mathrm{g}$.
245. Derive the expression for acceleration and tension in a string in a connected motion.

D Watch Video Solution

246. Fill in the blanks:

Newton's ___ law is te real law of motion.

D Watch Video Solution

247. What is law of conservation of momentum

?

D Watch Video Solution

248. State and explain the law of conservation
of linear momentum. Explain recoil of a gun and explosion of a bomb.

D Watch Video Solution

249. What is the principle of atom bomb?

D Watch Video Solution

250. What is an impulse? How is it related to the change in momentum?

- Watch Video Solution

251. Illustrate some applications of impulse.
252. Define concurrent forces and describe equilibrium of concurrent forces.

D Watch Video Solution

253. Derive the law of conservation of linear
momentum from Newton's third law of motion.
254. What is a frame of reference? Explain inertial and non-inertial frames of reference.

- Watch Video Solution

255. Is earth an inertial frame of reference?

D Watch Video Solution

256. Define friction. What is its cause?

Distinguish between static friction, limiting
friction and kinetic friction. How do they vary with the applied force?

D Watch Video Solution

257. State laws of limiting friction. Define coefficient of limiting friction and coefficient of kinetic friction. What are units and dimensions of coefficient of friction?

- Watch Video Solution

258. Define angle of repose and show that the coefficient of limiting friction is equalto tangent of repose. Hence show that angle of epose is equal to angle of friction.

D Watch Video Solution

259. Rolling friction is:

D Watch Video Solution
260. What are the methods of reducing friction?/

D Watch Video Solution
261. What is centripetal force?

D Watch Video Solution

262. Define centrifugal force.
263. Calculate the maximum speed with which a vehicle can travel on a level circular road without skidding.

D Watch Video Solution

264. What provides the centripetal force to a caar taking turn on a level road?
265. Calculate the speed with which a vehicle can safely move on a banked circular road.

How can wear and tear of tyres be reduced on
such a road? (taking into consideration the friction between tyres and road).

D Watch Video Solution

266. Derive an expression for the angle of bending of a cyclist on a curved track.
267. What is a simple pendulum? Obtin expression for its angular acceleration. When its bob is diplaced through an angle.

D Watch Video Solution

268. Derive the expression for acceleration and tension in a string in a connected motion.

D Watch Video Solution

269. A stone of mass mtied to the end of a string revolves in a vertical circle of radius R.

The net forces at the lowest and highest points of the circle directed vertically downwards are : [Choose the correct alternative] T_{1} and v_{1} denote the tension and speed at the lowest point. T_{2} and v_{2} denote corresponding values at the highest point.
(a) $m g-\mathrm{Tl}$
(b) $m g+\mathrm{Tl}$
(c) $m g+T 1-(m v 2 l) / R$
(d) $m g-T_{1}-\left(m v_{1}^{2}\right) / R$

$$
\begin{aligned}
& m g+T 2 \\
& m g-T 2 \\
& m g \sim T 2+(m v\rangle / R \\
& m g+T 2+\left(m \mathrm{u}_{1}\right) / R
\end{aligned}
$$

D Watch Video Solution

270. A bullet of mass 0.04 kg moving with a speed of $90 \mathrm{~ms}^{-1}$ enters a heavy wooden block and is stopped after a distance of 60 cm .

What is the average resistive force exerted by
the block on the bullet?

D Watch Video Solution

271. A rocket of initial mass 6000 kg ejects
mass at a constant rate of $16 \mathrm{kgs}^{-1}$ with constant relative speed of $11 \mathrm{kms}^{-1}$. What is
the acceleration of the rocket a minute after the blast? (Neglect gravity).

D Watch Video Solution

272. A mass of 4 kg rests on a horizontal plane.

The plane is gradually inclined at an angle
$\theta=15^{\circ}$ with the horizontal, the mass just
begins to slide. What is the coefficient of static friction between the block and the surface?
273. What is the acceleration of the block and trolley system shown in the figure, if the coefficient of kinetic friction between the trolley and the surface is 0.04 ?/ What is the tension in the string? (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Neglect the mass of the string.

- Watch Video Solution

274. The upper half of an inclined plane with inclination θ is perfectly smooth, while the lower half is rough. A bdy starting from rest at the top will again come to rest at the bottom, find the coefficient of friction for the lower half.

- Watch Video Solution

275. A piece of uniform string hangs vertically
so that its free end just touches horizontal surface of a table. The upper end of the strig is
now released. Show that at any instant during
the falling of string, the total force on the
surface is three times the weight of that part of string lying on the surface.

D Watch Video Solution

276. Two particles of equal masses m and m are connected by a light string of length 2 I. A constant force F is applied continuously at the mid-point of the string, always along the perpendicular bisector of the straight line
joining the two particles. Show that when the distance between the two particles is x , the acceleration of the particle is
$a=\frac{F}{m}=\frac{x}{\left(1^{2}-x^{2}\right)^{1 / 2}}$

D Watch Video Solution

277. The total mass of an elevator with a 80 kg
man in it is 1000 kg . This elevator moving upward with a speed of $8 m s^{-1}$ is brought to rest over a distance of 16 m . Calculate
the tension T in the cable supporting the elevator

D Watch Video Solution

278. The total mass of an elevator with a 80 kg
man in it is 1000 kg . This elevator moving upward with a speed of $8 m s^{-1}$ is brought to rest over a distance of 16 m . Calculate
the force exerted on man by the elevator floor.

D Watch Video Solution

279. A truck starts from rest and accelerates uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is dropped by a person standing on the top of the truck (6 m high from the ground). What are the:- velocity. (Neglect air resistance.)

- Watch Video Solution

280. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is
dropped by a person standing on the top of
the truck (6 m high from the ground). What
are the:- acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$?
(Neglect air resistance.)

D Watch Video Solution
281. Is linear momentum a scalar or a vector quantity?

D Watch Video Solution

282. Rockets can move in airfree space but jet planes cannot. Why?

- Watch Video Solution

283. Is earth an inertial frame of reference?

- Watch Video Solution

284. Why are tyres made circular?

- Watch Video Solution

285. Is friction independent of actual area orf contact?

- Watch Video Solution

286. Carts with rubber wheels are easier to ply
than those with iron wheels. Why?

D Watch Video Solution
287. Why is itmore difficult to catch a cricket ball than to catch a tennis ball moving with the same velocity?

D Watch Video Solution

288. What happens to a stone tied to the end
of a string and whirled in a circle if the string
suddenly breaks?

D Watch Video Solution

289. Why is it difficult to walk on ice?

D Watch Video Solution

290. Two masses 8 kg and 12 kg are connected at the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses, and the tension in the string when the masses are released.
291. How does Newton's first law of motion leads to the definition of force?

D Watch Video Solution

292. Define momentum of a body. Also give its units.

- Watch Video Solution

293. Determine aparent weight of a person in
a lift
when lift is moving upward with unifrom velocity

D Watch Video Solution
294. Angle of friciton (θ) and angle of repose
(a) are related as
(Watch Video Solution

