

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

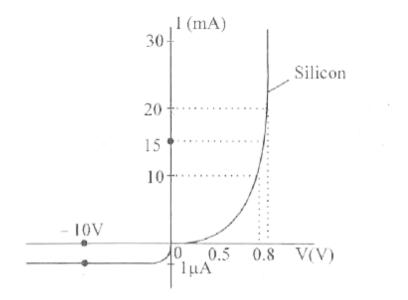
SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS

Examples

1. C, Si and Ge have same lattice structure. Why is C insulator.

while Si and Ge intrinsic semiconductors?

Watch Video Solution


2. Suppose a pure Si-crystal has $5 imes 10^{28} \mathrm{atoms} m^{-3}$. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Give that $n_i = 1.5 imes 10^{16} m^{-3}$.

3. Can we take one slab of p - type semiconductor and physically join it to another n - type semiconductor to get p - n junction?

4. The V-I characteristic of a silicon diode is shown in the figure . Calculate the resistance of the diode at (a) $I_D=15mA$ and (b)

$$V_D = -10V$$

Watch Video Solution

5. In a Zener regulated power supply, a Zener diode with $V_Z=6.0~
m V$ is used for regulation .

The load current is to be 4.0 mA and the

unregulated input is 10.0 V . What should be the value of series resistor R_S ?

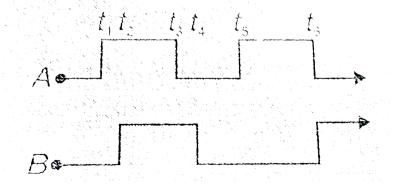
Watch Video Solution

6. The current in the forward bias is unknown to be more (~mA) than the current in the reverse bias (~ μA). What is the reason then to operate the photo diodes in reverse bias ?

7. Why are Si and GaAs are preferred materials for solar cells?

Watch Video Solution

8. Justify the output waveform (Y) of the OR gate for the following inputs A and B given in the figure below.



9. Take A and B input waveforms similar to that in Ex. Sketch the output waveform obtained from AND gate .

Watch Video Solution

10. Sketch the output wavefrom Y from a NAND gate having following inputs A and B

Exercises

- **1.** In an n- type silicon, which of the following statements is true ?
- (a) Electrons are majority carries and trivalent atoms are the dopants.
- (b) Electrons are majority carries and pentavalent atoms are the dopants.
 - (c) Holes are minority carries and paentavalent atoms are the dopants.

- (d) Holes are minority carries and trivalent atoms are the dopants.
 - A. Electrons are majority carriers and trivalent atoms are the dopants.
 - B. Electrons are minority carriers and pentavalent atoms are the dopants.
 - C. Holes are minority carriers and pentavalent atoms are the dopants.
 - D. Holes are majority carriers and trivalent atoms are the dopants

Answer: c

- **2.** Which of the statements given in above example is true for p type semiconductors?
 - A. Electrons are majority carriers and trivalent atoms are the dopants.
 - B. Electrons are minority carriers and pentavalent atoms are the dopants.

- C. Holes are minority carriers and
- pentavalent atoms are the dopants.
- D. Holes are majority carriers and trivalent atoms are the dopants

Answer: d

Watch Video Solution

3. Carbon, silicon and germanium have four valence elcectrons each . These are characterised by valence and conduction

bands separated by energy band - gap respectively equal to $(E_g)_c(E_g)_{si}$ and $(E_g)_{Ge}$.

Which of the following statements ture?

A.
$$\left(E_g
ight)_{Si}<\left(E_g
ight)_{Ge}<\left(E_g
ight)_{C}$$

B.
$$\left(E_g
ight)_C<\left(E_g
ight)_{Ge}>\left(E_g
ight)_{Si}$$

C.
$$\left(E_g
ight)_C > \left(E_g
ight)_{Si} > \left(E_g
ight)_{Ge}$$

D.
$$\left(E_g
ight)_C=\left(E_g
ight)_{Si}=\left(E_g
ight)_{Ge}$$

Answer: c

- **4.** In an unbiased p-n junction holes diffuse from the p-region to the n-region because
 - A. free electrons in the n-region attract them.
 - B. they move across the junction by the potential difference.
 - C. hole concentration in p-region is more as compared to n-region.
 - D. All the above.

Answer: c

Watch Video Solution

5. When a forward bias is applied to a p -n junction. It

A. raises the potential barrier.

B. reduces the majority carrier current to zero.

C. lowers the potential barrier.

D. None of the above.

Answer: c

Watch Video Solution

6. In half - wave rectification, what is the output frequency, if the input frequency is 50 Hz ? What is the output frequency of a full - wave rectifier for the same input frequency ?

7. A p-n junction is fabricated from a semiconductor with band gap of 2.8eV. Can it detect a wavelength of 6000nm?

Watch Video Solution

Additional Exercises

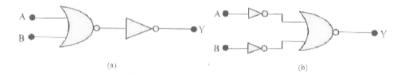
1. The number of silicon atoms per $m^3is5 imes 10^{28}.$ This is doped simultaneously with $5 imes 10^{22}$ atoms per m^3 of Arsenic and

 $5 imes 10^{20} perm^3$ atoms of indium. Calculate the number of electrons and holes. Given that $n_i = 1.5 imes 10^{16} m^{-3}$. Is the material n-type or p-type?

Watch Video Solution

2. In an intrinsic semiconductor the energy gap $E_q is 1.2 eV$. Its hole mobility is much smaller than electron mobility and independent of temperature. What is the ratio between conductivity at 600K and 300K?

Assume that temperature dependence intrinstic concentration n_i is given by $n_i=n_0\exp\left(rac{-E_g}{2k_T}
ight)$, where n_0 is a constant and $k_=8.62 imes10^{-5}eV/K$.



Watch Video Solution

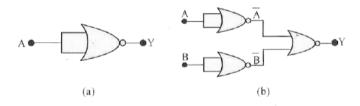
3. In a p-n junction diode, the currect I can expressed as $I=I_0\exp\left(\frac{eV}{2k_BT}-1\right)$ where I_0 is called the reverse saturation current, V is the voltage across the diode and is positive for forward bias and negative for reverse bias,

and I is the current through the diode, K_B is the Boltzmann constant $\left(8.6 imes 10^{-5} eV/K
ight)$ and T is the absolute temperature. If for a given diode $I_o = 5 \times 10^{-12} A$ and T = 300 K, then (a) What will be the forward current at a formward voltage of 0.6V? (b) What will be the increase in the current if the voltage across the diode is increased to 0.7V ? (c) What is the dynamic resistance? (d) What will be current if reverse bias voltage changes from 1V to 2V?

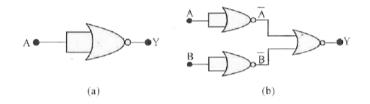
4. You are given the two circuits as shown in fig. show that circuit (a) acts as OR gate while the circuit (b) acts as AND gate .

5. Write the truth table for a NAND gate connected as given in Fig. 14.37.

Hence identify the exact logic operation carried out by this circuit.


Watch Video Solution

6. You are given two circuits as shown in fig. which consist of NAND gates . Identify the logic operation carried out by the two circuits



7. Write the truth table for the circuits gives in figure consisting of NOR gates only . Identify the logic operations (OR , AND , NOT) performed by the two circuits .

8. Write the truth table for the circuits gives in figure consisting of NOR gates only . Identify the logic operations (OR , AND , NOT) performed by the two circuits .

