©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MBD

MOTION IN A STRAIGHT LINE

Example

1. State in each case, whether the motion is one, two or three dimensional. An ant crawling on globe

- Watch Video Solution

2. State in each case, whether the motion is one, two or three dimensional. A piece of paper flying in the sky.
3. State in each case, whether the motion is one, two or three dimensional. A speeding bus on a straight highway Moon revolving around the earth.

- Watch Video Solution

4. Is it possible that displacement is zero, but not the distance? Give example.

- Watch Video Solution

5. Can earth be regarded as a point object when it is describing its yearly journey around the sun?

- Watch Video Solution

6. Can a body have a constant velocity but varying speed?

- Watch Video Solution

7. Can a body have a constant speed but a varying velocity?

- Watch Video Solution

8. What will be the nature of x - t graph for a uniform motion?

- Watch Video Solution

9. Can x - t graph be a striaght line parallel to position axis?

- Watch Video Solution

10. Define kinematics.
11. Can the speed of a body be negative?

- Watch Video Solution

12. What can you say about the motion of object whose distance - time graph is a straight line parallel to time axis ?

- Watch Video Solution

13. What does the slope of position-time graph represents?

- Watch Video Solution

14. Under what condition is the average velocity equal to instantaneous velocity?
15. What is the numerical ratio of velocity to speed of an object?

- Watch Video Solution

16. Show that rest and motion are relative terms.

- Watch Video Solution

17. What do you understand by positive and negative time?

- Watch Video Solution

18. What does slope of ($v-\mathrm{t}$) graph represent?
19. A ball is thrown straight up. What is its velocity ad acceleration at the highest point?

- Watch Video Solution

20. Why does time occur twice in a unit of acceleration?

- Watch Video Solution

21. Can a body have zero velocity and still be accelerated?

- Watch Video Solution

22. What is the acceleration of a particle moving with a uniform velocity?

- Watch Video Solution

23. What is the nature of acceleration-time graph when the body moves with constant acceleration ?

Watch Video Solution

24. If the instantaneous velocity of a particle is zero will its instantaneous acceleration be necessarily zero?

- Watch Video Solution

25. Can the velocity of an object be in a direction other than the direction of acceleration?

- Watch Video Solution

26. Two balls of different masses (one lighter and other heavier) are thrown vertically upward with same initial speed. Which one will rise to
the greater height)?

- Watch Video Solution

27. Which of the two velcotiy and acceleration, gives the direction of motion of the body? Explain.

- Watch Video Solution

28. In which of the following examples of motion, can the body be considered approximately a point object:
A. a railway carriage moving without jerks between two stations
B. a monkey sitting on top of a man cycling smoothly on a circular traqck
C. a spinning cricket bal that turn sharply on hitting the ground.
D. a tumbling beaker that has slipped off the edge of a table?

Answer:

- Watch Video Solution

29. A woman starts from her home at 9.00 am, walks with a speed of $5 k m h^{-1}$ on a straight road up to her office 2.5 km away, stays at the office up to 5.00 pm , and returns home by an auto with a speed of $25 \mathrm{kmh}^{-1}$.Choose suitable scales and plot the x-t graph of her motion.

(Watch Video Solution

30. A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1 in long and requires 1 s . Plot the x-t graph of his motion. Determine graphically and otherwise how long the drunkard takes to fall in a pit 13 m away from the start.
31. A jet airplane travelling at the speed of $500 \mathrm{kmh}^{-1}$, ejects its products of combustion at the speed of $1500 \mathrm{kmh}^{-1}$ relative to the jet plane. What is the speed of the latter with respect to an observer on the ground ?

- Watch Video Solution

32. A car moving along a straight highway with speed of ' $126 \mathrm{~km} \mathrm{~h}^{\wedge}-1$ ' is brought to a stop within a distance of 200 m . What is the retardation of the car (assumed uniform), and how long does it take for the car to stop ?

- Watch Video Solution

33. Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform speed of $72 \mathrm{kmh}^{-1}$ in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by $1 m s^{-2}$. If after 50 s , the guard of B just brushes past the driver of A , what was the original distance between them ?

(D) Watch Video Solution

34. On a two-lane road, car A is travelling with a speed of $36 \mathrm{kmh}^{-1}$. Two cars B and C approach car A in opposite directions with a speed of $54 k m h^{-1}$ each. At a certain instant, when the distance $A B$ is equal to $A C$, both being 1 km , B decides to overtake A before C does. What minimum acceleration of car B is required to avoid an accident ?

- Watch Video Solution

35. Two towns A and B are connected by a regular bus service with a bus leaving in either direction every T minutes. A man cycling with a speed of $20 \mathrm{kmh}^{-1}$ in the direction A to B notices that a bus goes past him every 18 min in the direction of his motion, and every 6 min in the opposite direction. What is the period Tof the bus service and with what speed (assumed constant) do the buses ply on the road?
36. A player throws a ball upwards with an initial speed of $29.4 m s^{-1}$:What is the direction of acceleration during the upward motion of the ball ?

- Watch Video Solution

37. A player throws a ball upwards with an initial speed of $29.4 \mathrm{~ms}^{-1}$:What are the velocity and acceleration of the ball at the highest point of its motion?

- Watch Video Solution

38. A player throws a ball upwards with an initial speed of $29.4 m s^{-1}$:What are the velocity and acceleration of the ball at the highest point of its motion?

- Watch Video Solution

39. A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to $49 \mathrm{~ms}^{-1}$. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of $5 \mathrm{~ms}^{-1}$ and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands ?

Watch Video Solution

40. Read each statement below carefully and state with reasons and examples, if it is true or false :- A particle In one-dimensional motion:with zero speed at an instant may have non-zero acceleration at that instant

- Watch Video Solution

41. Read each statement below carefully and state with reasons and examples, if it is true or false :- A particle In one-dimensional motion:-
with zero speed may have non-zero velocity,

- Watch Video Solution

42. Read each statement below carefully and state with reasons and examples, if it is true or false :- A particle In one-dimensional motion:with constant speed must have zero acceleration,

- Watch Video Solution

43. Read each statement below carefully and state with reasons and examples, if ti is true or false: A particle in one dimensional motion. with positive value of acceleration must be speeding up.

- Watch Video Solution

44. A ball is dropped from a height of 90 m on a floor. At each collision with the floor, the ball loses one tenth of its speed. Plot the speed-time
graph of its motion between $t=0$ to 12 s .

- Watch Video Solution

45. Explain clearly, with examples, the distinction between :- magnitude of displacement (sometimes called distance) over an interval of time, and the total length of path covered by a particle over the same interval,

- Watch Video Solution

46. Explain clearly, with examples, the distinction between :- magnitude of average velocity over an interval of time, and the average speed over the same interval. [Average speed of a particle over an interval of time is defined as the total path length divided by the time interval]. Show in both (a) and (b) that the second quantity is either greater than or equal to the first. When is the equality sign true ? [For simplicity, consider onedimensional motion only].
47. A man walks on a straight road from his home to a market 2.5 km away with a speed of $5 \mathrm{kmh}^{-1}$. Finding the market closed, he instantly turns and walks back home with a speed of $7.5 \mathrm{kmh}^{-1}$. What is the :magnitude of average velocity, and

- Watch Video Solution

48. A man walks on a straight road from his home to a market 2.5 km away with a speed of $5 k m h^{-1}$. Finding the market closed, he instantly turns and walks back home with a speed of $7.5 \mathrm{kmh}^{-1}$. What is the :magnitude of average velocity, and

- Watch Video Solution

49. In Exercises 3.13 and 3.14, we have carefully distinguished between average speed and magnitude of average velocity. No such distinction is necessary when we consider instantaneous speed and magnitude of
velocity. The instantaneous speed is always equal to the magnitude of instantaneous velocity. Why?

- Watch Video Solution

50. Look at the graphs (Fig. 3.20) carefully and state, with reasons, which of these cannot possibly represent one-dimensional motion of a particle.

(a)

(c)

(b)

(d)
51. Figure 3.21 shows the x-t plot of one-dimensional 4 motion of a particle. Is it correct to say from the graph that the particle moves in a straight line for $\mathrm{t}<0$ and on a parabolic path for $\mathrm{t}>0$? If not, suggest a suitable physical context for this graph.

52. A police car running on a highway with a speed of $30 \mathrm{~km} / \mathrm{h}$ fires on the vehicle of thiefs running in the same direction at a speed of $192 \mathrm{~km} / \mathrm{h}$. If the velocity of the bullet is $150 \mathrm{~m} / \mathrm{s}$ then with what velocity the bullet will hit the thiefs ?
53. Suggest a suitable physical situation for each of the following graphs:

- Watch Video Solution

54. In the figure gives the ($x-t$) plot of a particle executign onedimensional simple harmonic motion. Give the signs of position, velocity
and acceleration variables of the particle at $\mathrm{t}=0.3 \mathrm{~s}, 1.2 \mathrm{~s},-1.2 \mathrm{~s}$.

- Watch Video Solution

55. Figure 3.24 gives the x-t plot of a particle in one-dimensional motion.

Three different equal intervals of time are shown. In which interval is the average speed greatest, and in which is it the least ? Give the sign of
average velocity for each interval.

- Watch Video Solution

56. In the figure gives a speed-time graph of a particle in motion along a constant direction. Three equal intervals of time are shwon. In which interval is the average acceleration greatest in magnitude ? In which interval is the average speed greatest? Choosing the positive direction as the constant direction of motion, give the signs of v and a in the three
intervals. What are the acceleration at the points A, B, C and D ?

D Watch Video Solution

57. A three-wheeler starts from rest, accelerates uniformly with $1 \mathrm{~ms}^{-2}$ on a straight road for 10 s , and then moves with uniform velocity. Plot the distance covered by the vehicle during the 11th second ($n=1,2,3 \ldots$) versus
58. What do you expect this plot to be during accelerated motion : a straight line or a parabola ?

- Watch Video Solution

58. A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to $49 \mathrm{~ms}^{-1}$. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of $5 m s^{-1}$ and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands ?

- Watch Video Solution

59. On a long horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed $9 \mathrm{kmh}^{-1}$ (with respect to the belt) between his father and mother located 50 m apart on the moving belt. The belt moves with a speed of $4 \mathrm{kmh}^{-1}$. For an observer on a stationary platform outside, what is the:- speed of the child running in the direction of motion of the
belt ?

- Watch Video Solution

60. On a long horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed $9 k m h^{-1}$ (with respect to the belt) between his father and mother located 50 m apart on the moving belt. The belt moves with a speed of $4 \mathrm{kmh}^{-1}$. For an observer on a stationary platform outside, what is the:- speed of the child running opposite to the direction of
motion of the belt?

- Watch Video Solution

61. On a long horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed $9 \mathrm{kmh}^{-1}$ (with respect to the belt) between his father and mother located 50 m apart on the moving belt. The belt moves with a speed of $4 \mathrm{kmh}^{-1}$. For an observer on a stationary platform outside, what is the:- time taken by the child in (a) and (b) ? Which of the answers
alter if motion is viewed by one of the parents ?

- Watch Video Solution

62. Two stones are thrown up simultaneously from the edge of a cliff 200 m high with initial speeds of $15 \mathrm{~ms}^{-1}$ and $30 \mathrm{~m} \mathrm{~s}^{\wedge}-1$
.Ver if ytt̂hegraphshown \in Fig. $3.27 c$ or rectlyrepresentsthetimevar \leq ctairresis \tan ce and as \sum ett̂hes $\rightarrow \neq s d o \neg$ reboundafterhi \in gth

- Watch Video Solution

63. The speed-time graph of a particle moving along a fixed direction is shown in Fig. 3.28. Obtain the distance traversed by the particle between:-
$\mathrm{t}=0 \mathrm{~s}$ to 10 s,

- Watch Video Solution

64. The velocity-time graph of particle in one dimensional motion is shown in the fig.

Which if the following formulae are correct for describing the motion of the pawrticle over the time interval $t_{1} \rightarrow t_{2}$ $v\left(t_{2}\right)=v\left(t_{1}\right)+a\left(t_{2}-t_{2}\right), \quad v_{\text {avera } \geq}=\frac{\left[x\left(t_{2}\right)-x\left(t_{1}\right)\right]}{\left(t_{2}-t_{1}\right)}, x\left(t_{2}\right)-x\left(t_{1}\right)=$ area under the $v-t$ curve. bounded by the t-axis and the dotted line shown.

Watch Video Solution

65. A lift is coming form 8th floor and is just about to reach 4th floor. Taking ground floor as origin and positive direction upwards for all quantities, which one of the folowing is correct?
A. $x<0, v<0, a>0$
B. $x>0, v<0, a>0$
C. $x>0, v<0, a>0$
D. $x>0, v>0, a<0$

Answer:

- Watch Video Solution

66. In one dimensional motion, instaneous speed v satisfies $0 \leq v<v_{0}$
A. The displacement in time T must always take non-negative values.
B. The displacement x in time T satisfies $-v_{0} T<x<v_{0} T$.
C. The aceleration is always a non-negative number.
D. The motion has no turning points.

Answer:

- Watch Video Solution

67. A vehicle travels half the distance L with speed V_{1} and the other half with dspeed v_{2}, then its average speed is
A. $\frac{v_{1}+v_{2}}{2}$
B. $\frac{2 v_{1}+v_{2}}{v_{1}+v_{2}}$
C. $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
D. $\frac{L\left(v_{1} v_{2}\right)}{v_{1} v_{2}}$

Answer:

68. The displacement of a particle is given by $x=(t-2)^{2}$ where x is in metres and t in seconds. The distance covered by the particle in first 4 seconds is
A. 4 m
B. 8 m
C. 12 m
D. 16 m

Answer:

- Watch Video Solution

69. At a metro station, a girl walks up a stationary esclator in time t_{1}. If she remains stationary on the escalator, then the escalator take her up in time t_{2}. The time taken by her to walk up on the moving escalator will be
A. $\left(t_{1}+t_{2}+2\right) / 2$
B. $t_{1} t_{2} /\left(t_{2}-t_{1}\right)$
C. $t_{1} t_{2} /\left(t_{2}+t_{1}\right)$
D. $t_{1}-t_{2}$

Answer:

- Watch Video Solution

70. The variation of quantity A with quantity B, plotted in fig. describes the motion of a particle in a straight line.
A. Quantity B may represent time
B. Quantity A is velocity if motion is uniform
C. Quantity A is displacement is motion is uniform
D. Quantity A is velocity if motion is uniformly accelerated.

Answer:

- Watch Video Solution

71. A graph of x versus t is shown in fig. choose corredt alternatives from below.

A. The particle was released from rest at $\mathrm{t}=0$
B. At B, the acceleration a gt 0
C. At C, the fvelocity and the acceleration vanish, Average velocity for the motion between A and D is positive
D. The speed at D exceeds that at E .

Answer:

72. A particle executes the motion described by $x(t)=x_{0}\left(1-e^{-\gamma t}, t \leq 0, x_{0}>0\right.$. Where does the particle start and with what velocity?
A. $x(t)>0$ for all $t>0$
B. $v(t)>0$ for all $t>0$
C. $a(t)>0$ for all $t>0$
D. $v(t)$ lies between 0 and 2.

Answer:

- Watch Video Solution

73. A spring with one end attached to a mass and the other to a rigid suppord is stretched and released.
A. Magnitude of acceleration, when just released is maximum.
B. Magnitude of acceleration, when at equilibrium position, is maximum.
C. Speed is maximum when mass is at equilibrium position.
D. Magnitude of displacement is always maximum whenever speed is minimum.

Answer:

- Watch Video Solution

74. A ball is bouncing elastically with a speed $1 \mathrm{~m} / \mathrm{s}$ between walls of a railways compartment of size 10 m in a direction perpendicular to wals. The train is moving at a constant velocity of $10 \mathrm{~m} / \mathrm{s}$ parallel to the direction of motion of the ball . As seen from the ground
A. the drection of motion of the ball changes every 10 seconds
B. speed of ball changes every 10 seconds
C. average speed of ball is the same as from the train.
D.

Answer:

- Watch Video Solution

75. Refer to the graph in fig match the following graph characteristic.
A. has vgt 0 a lt 0 throughout
B. has x gt 0 throughout and has a point with $v=0$ a point with $a=0$
C. has a point with zero displacement for t gt 0
D. has v lt 0 and a gt 0

Answer:

- Watch Video Solution

76. A uniformly moving cricket ball is turned back by hitting it with a bat for a very short time interval. Show the variation of its acceleration with time. (Take acceleration in the bakward direction as positive).

- Watch Video Solution

77. Give examples of a one-dimensional motion where the particle moving along positive x -direction comes to rest periodically and moves forward.

- Watch Video Solution

78. Give examples of a one-dimensional motion where the particle moving along positive x -direction comes to rest periodically and moves backward.

- Watch Video Solution

79. Give example of a motion wehre $x>0 . v<0, a>0$ at a particular instant.

- Watch Video Solution

80. An object falling through a fluid is observed to have acceleration given by $\mathrm{a}=\mathrm{g}$ - bv where $\mathrm{g}=$ gravitational acceleration and b is constant. After a long time of release, it is observed to fall with constant speed.What must be the value of constant speed?

- Watch Video Solution

81. A particle executes the motion described by $x(t)=x_{0}\left(1-e^{-\gamma t}, t \leq 0, x_{0}>0\right.$. Where does the particle start and with what velocity?

- Watch Video Solution

82. A particle executes the motion described by $x(t)=x_{0}\left(1-e^{-\gamma t}, t \leq 0, x_{0}>0\right.$. Find maximum and minimum vlaues of $x(t), v(t), a(t)$. Show that $x(t)$ and $a(t)$ increase with time and $v(t)$ decreases with time.

- Watch Video Solution

83. A bird is tossing (flying to and fro 0 between two cars moving towards each other on a straight road. On car has a speed of $18 \mathrm{~km} / \mathrm{h}$ while the other has the speed of $27 \mathrm{~km} / \mathrm{h}$. The bird starts moving from first caer towards the other and is moving with the speed of $36 \mathrm{~km} / \mathrm{h}$ and when the two cars were separated by 36 km . What is the total distance comered by the bird ? What is the total displacement of the bird ?

- Watch Video Solution

84. A man runs across the roof-top of a tall building and jumps horizontally with the hope of landing on the roof of the next building
which is of a lower height than the first. If his speed is $9 \mathrm{~m} / \mathrm{s}$, the distance between the two buildings is 10 m and the height difference is 9 m , will he be able to land on the next building?

- Watch Video Solution

85. It is a common observation that rain clouds can be at about a kilometer altitude above the ground.

If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km / h. $\left(G=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

- Watch Video Solution

86. It is a common observation that rain clouds can be at about a kilometer altitude above the ground.

A typical rain drop is about 4 mm diameter. Momentum is mass \times speed in magnitude. Estimate its momentum when it hits the ground.
87. It is a common observation that rain clouds can be at about a kilometer altitude above the ground.

If the diameter of the rain drop is 4 mm then Estimate the time required to flatten the drop.

- Watch Video Solution

88. It is a common observation that rain clouds can be at about a kilometer altitude above the ground.

Rate of change of momentum is force. Estimate how much force such a drop would exert on you.
$\left(g=10 \frac{m}{s^{2}}\right.$ and diameter of drop $\left.=4 \mathrm{~mm}\right)$

- Watch Video Solution

89. It is a common observation that rain clouds can be at about a kilometer altitude above the ground.

Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm .
$\left(g=10 \frac{m}{s^{2}}\right.$ and diameter of drop $\left.=4 \mathrm{~mm}\right)$

- Watch Video Solution

90. A motor car moving at a speed of $72 \mathrm{~km} / \mathrm{h}$ can not come to a stop in less than 3.0 s while for a truch this time interval is 5.0 s On a highway the car is behind the truck both moving at $72 \mathrm{~km} / \mathrm{h}$ The truck geives a signal that it is going to stop at emergency. At what distance the car should be from the truck so that it does bot bump onto (collide with) the truck. Human responde time id 0.5 s . (comment : This is to illustrate why vehicles carr the message on the rear side. "Keep safe Distance").

- Watch Video Solution

91. A monkey climbs up a slippery pole for 3 seconds and susequently slips for 3 seconds. Its velocity at time t is given by $v(t)=2 t(3-t), 0<t<3$ and $v(t)=-t-3)(6-t)$ for $3<t<6 \mathrm{~s} \mathrm{Im} / \mathrm{s}$. It repeats this cycle till it reaches
the height of 20 m .
At what time is its velocity maximum?

- Watch Video Solution

92. A monkey climbs up a slippery pole for 3 seconds and susequently slips for 3 seconds. Its velocity at time t is given by $v(t)=2 t(3-t), 0<t<3$ and $v(t)=-t-3)(6-t)$ for $3<t<6 \mathrm{~s} \mathrm{Im} / \mathrm{s}$. It repeats this cycle till it reaches the height of 20 m .

At what time is its average velocity maximum?

- Watch Video Solution

93. A monkey climbs up a slippery pole for 3 seconds and susequently slips for 3 seconds. Its velocity at time t is given by $v(t)=2 t(3-t), 0<t<3$ and $v(t)=-t-3)(6-t)$ for $3<t<6 \mathrm{~s} \mathrm{Im} / \mathrm{s}$. It repeats this cycle till it reaches the height of 20 m .

At what time is its average velocity maximum?
94. A monkey climbs up a slippery pole for 3 seconds and susequently slips for 3 seconds. Its velocity at time t is given by $\mathrm{v}(\mathrm{t})=2 \mathrm{t}(3-\mathrm{t}), 0<\mathrm{t}<3$ and $v(t)=-t-3)(6-t)$ for $3<t<6 \mathrm{~s} \mathrm{Im} / \mathrm{s}$. It repeats this cycle till it reaches the height of 20 m .

How many cycles (counting fractions) are required to reach the top?

- Watch Video Solution

95. A man is standing on top of a building 100 m high. He throws two balls vertically, one at $\mathrm{t}=0$ and other after a time interval (less than 2 s).

The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is 15 m at $\mathrm{t}=2 \mathrm{~s}$. The gap is found to remain constant. The velocities with which the balls were thrown.

- Watch Video Solution

96. Choose the correct statement from the followoing:
A. the magnitude of the average velocity in an interval is equal to its average speed in that interval.
B. The magntiude of velocity of a particle is equal to its speed.
C. It is possible to have a situation in which the speed of the particle is never zero but the average iin an interval is zero.
D. It is possible to have a situation in which the speed of particle is zero but the average speed is not zero.

Answer:

- Watch Video Solution

97. The study of motion, without consideration of its cause is stuidied in
A. statistics
B. kinematics
C. mechanics
D. modern physics.

Answer:

- Watch Video Solution

98. The ratio of the numerical values of the average velocity and average speed of a body is always:
A. unity
B. unity or less
C. unity or more
D. less than unity

Answer:

99. In 1.0 s , a particle goes form point A to point B, moving in a semicircle of radius 1.0 m . The magntiude of average ve3lcity is :

A. $3.14 m s^{-1}$
B. $2.0 m s^{-1}$
C. $1.0 m s^{-1}$
D. zero

Answer:

- Watch Video Solution

100. Which one of the following graphs represents motoin with unifrom
A.

B.

C.

D.

Answer:

101. The displacement of a body is zero. The distance covered
A. is zero
B. is not zero
C. may or may not be zero
D. depends upon the acceleration

Answer:

- Watch Video Solution

102. Does the speedometer of a car measure its average speed ?
A. average speed
B. instantaneous velocity
C. acceleration
D. instantaneous speed.

- Watch Video Solution

103. A car travelling on a straight track moves with unifrom velocity of v_{1} for some time and uniform velocity V_{2} for the next equal time.The average velocity v is given by
A. $\left(\sqrt{v_{1} v_{2}}\right)$
B. $\left(\frac{v_{1}+v_{2}}{2}\right)$
C. $\left(\left(\frac{1}{v_{1}}\right)+\left(\frac{1}{v_{2}}\right)\right)^{-1}$
D. $2\left(\left(\frac{1}{v_{1}}\right)+\left(\frac{1}{V_{2}}\right)\right)^{-1}$

Answer:

- Watch Video Solution

104. A body is imparted motion from rest of move in straight line. If it is then obstructed, by an opposite force, then:
A. the body may necessarily change direction
B. the body is sure to slow down
C. thebody will necessarily continue to move in the same direction at the same speed
D. None of the above.

Answer:

- Watch Video Solution

105. A car travels due east on a level road for 3 km . It then turns due north at an intersection and travels 4 km before stopping. The magnitude of the resultant displacement of car is
A. 5 km
B. 7 km
C. 1 km
D. -1 km

Answer:

- Watch Video Solution

106. If a car at rest accelerates uniformly to a speed of $144 \mathrm{kmh}^{-1}$ in 20 s , it cross a distance of
A. 20 m
B. 400 m
C. 1440 m
D. 2980 m

Answer:

107. A particle moves alopng x-axis in such a way that its coordinates x varies with time t according to the equation. $x=\left(2-5 t+6 t^{2}\right) \mathrm{m}$. The initial velocity of the pawrticle is
A. $-5 m s^{-1}$
B. $6 m s^{-1}$
C. $-3 m s^{-1}$
D. $3 m s^{-1}$

Answer:

Watch Video Solution

108. If a train travelling at $72 m k h^{-1}$ is to be brouhgt to rest in a distance 200 m , then its retardation should be
A. $20 m s^{-2}$
B. $10 m s^{-2}$
C. $2 m s^{-2}$
D. $1 m s^{-2}$

Answer:

- Watch Video Solution

109. Find the total displacement of a body in 8 s starting from rest with an acceleration of $20 \mathrm{cms}^{-2}$
A. 64 cm
B. 64 cm
C. 640 cm
D. 0.064 m

Answer:

110. A body is dropped form the top of the tower and reaches the ground in 3s. Then the height of the tower is
A. 44.8 m
B. 44.1 m
C. 40.2 m
D. 15.6 m

Answer:

- Watch Video Solution

111. Fill in the blanks:
when a body starts from rest and falls freely, its initial velocity is \qquad .
112. Fill in the blanks:

If the x-t graph is a straight line parallel to x-axis, then the body is
\qquad .

- Watch Video Solution

113. Fill in the blanks:

If the x-t graph is a straight line inclined to time axis, the graph represent constant \qquad .

- Watch Video Solution

114. Fill in the blanks:

The __ and __ of a body need not be in same direction.

- Watch Video Solution

115. Fill in the blanks:

Speed is always a positive quantity however it may \qquad or with time.

- Watch Video Solution

116. Fill in the blanks:

Distance-time graph can not be \qquad time axis.

- Watch Video Solution

117. Fill in the blanks:
$x-t$ graph of uniformly accelerated motion is a \qquad .

- Watch Video Solution

118. Fill in the blanks:

Relative velocity \qquad .

Watch Video Solution

119. Fill in the blanks:

Time rate of change of \qquad with time is called velocity.

Watch Video Solution

120. Fill in the blanks:

The \qquad of displacement is equal to the actual distance moved.

D Watch Video Solution

121. Define kinematics.
122. What is particle dynamics?

Watch Video Solution

123. Define relative velocity?

- Watch Video Solution

124. A particle starts from rest and covers a distance on a straight path in direct proportion to the square of time elapsed. What can one conclude about its acceleration?

- Watch Video Solution

125. Give an example where displacement of a particle is equal to the distance covered by it.
126. What is the nature of displacement-time graph of a particle moving with constant acceleration ?

- Watch Video Solution

127. The distance travelled by a body varies directly proportional to the square of time. What type of motion this body has?

- Watch Video Solution

128. What does the tangent at a point to the velocity-time graph represent?

- Watch Video Solution

129. What does the tangent at a point to the displacement-time graph represent?

- Watch Video Solution

130. Is it possible, that the direction of acceleration and velocity be oppsoite to each other, in case, a body is moving?

- Watch Video Solution

131. Is it possible, that the direction of acceleration and velocity be oppsoite to each other, in case, a body is moving?

- Watch Video Solution

132. What do you mean by one dimensional motion?
133. What causes variation in velocity?

- Watch Video Solution

134. Is it possible to accelerate a body if its speed is constant?

- Watch Video Solution

135. If both the magnitude and direction of acceleration of a body is constant, does it mean that the path of the body be necessarily be a straight line?

- Watch Video Solution

136. Does the speedometer of a car measure its average speed ?
137. What does the tangent at a point to the velocity-time graph represent?

- Watch Video Solution

138. What does the tangent at a point to the velocity-time graph represent?

- Watch Video Solution

139. A ball is thrown straight up. What is its velocity ad acceleration at the highest point?

- Watch Video Solution

140. Which of the two velcotiy and acceleration, gives the direction of motion of the body? Explain.
141. A body is moving with uniform velocity of $10 \mathrm{~ms}^{-1}$ for last 10 s , what is its acceleration?

- Watch Video Solution

142. Show that rest and motion are relative terms.

- Watch Video Solution

143. A particle is a \qquad of negligible dimensions.

(Watch Video Solution

144. The displacement has \qquad of length.
145. Speed is a \qquad quantity.

- Watch Video Solution

146. For an object to be in uniform motion no \qquad is required.

- Watch Video Solution

147. When an object moves with varible velocity, either its \qquad or \qquad of motion change with time.

- Watch Video Solution

148. The position-time graph for non-uniform motion is _ a straight line.
149. What do you mean by mechanics

- Watch Video Solution

150. What do you mean by statics

- Watch Video Solution

151. What do you mean by kinematics

- Watch Video Solution

152. What do you mean by Dynamics.

- Watch Video Solution

153. Define motion. Give examples.
154. Explain how far is it correct to consider an object as a "point" object.

- Watch Video Solution

155. Represent graphically the motion of particle which is stationary.

- Watch Video Solution

156. Show that rest and motion are relative terms.

- Watch Video Solution

157. Give some points of differences between distance and displacement.
158. Distinguish between speed and velocity.

- Watch Video Solution

159. What does the slope of position-time graph represents?

- Watch Video Solution

160. Distinguish between speed and velocity.

- Watch Video Solution

161. If the distance covered by a moving object varies directly on time, what conclusions could you draw about the motion and the forces.
162. If the distance travelled by a moving object varies directly as the cube of time, how does the acceleration of the body depend on time?

- Watch Video Solution

163. A particle moving along a straight line reverses its direction of motion once. What can we say about the nature of its acceleration?

- Watch Video Solution

164. A particle moving along a straight line path reverses its direction of motion twice. What can we say about the nature of its acceleration?

- Watch Video Solution

165. Why the direction of motion of a particle is given by its velocity and not by acceleration?
166. What do you mean by positive and negative acceleration?

- Watch Video Solution

167. Does speeding up and slowing down refer to acceleration and decelerating respectively?

- Watch Video Solution

168. Derive the expression for distance traveled by an object in nth second of its motion.
169. A bird is tossing (flying to and fro 0 between two cars moving towards each other on a straight road. On car has a speed of $18 \mathrm{~km} / \mathrm{h}$ while the other has the speed of $27 \mathrm{~km} / \mathrm{h}$. The bird starts moving from first caer towards the other and is moving with the speed of $36 \mathrm{~km} / \mathrm{h}$ and when the two cars were separated by 36 km . What is the total distance comered by the bird ? What is the total displacement of the bird ?

- Watch Video Solution

170. What are the different theorems of differentiation.

- Watch Video Solution

171. Give the differential ocoefficient of trigonometric functions.

- Watch Video Solution

172. Differentiate following w.r.t.x. $\cos 2 x$

Watch Video Solution
173. Differentiate following w.r.t.x.
$\sin 2 x \cos 3 x$.

- Watch Video Solution

174. Differentiate following w.r.t.x.
x^{2}

D Watch Video Solution
175. Differentiate following w.r.t.x.
$5 x^{2}$
176. What do you mean by integration ?

- Watch Video Solution

177. Evluate $\int\left(1+x^{2}\right) d x$

- Watch Video Solution

178. Integrate of following w.r.t.x.
$\int x^{\frac{1}{2}} d x$

- Watch Video Solution

179. Integrate of following w.r.t.x.
$\int\left(x+\frac{1}{x}\right) d x$
180. Integrate of following w.r.t.x.
$\int\left(\sqrt{x}+\frac{1}{\sqrt{x}} d x\right.$

- Watch Video Solution

181. Integrate of following w.r.t.x.
$\int e^{2 x+3} d x$

- Watch Video Solution

182. Integrate of following w.r.t.x.
$\int 2 x^{6}\left(\frac{1}{2}\right) d x$.
(Watch Video Solution
183. Integrate of following w.r.t.x.
$a x^{2}+b x+c$

Watch Video Solution

184. Integrate of following w.r.t.x.
$6 x^{2}+2 x^{2}-\frac{1}{x}+2 x^{\frac{2}{3}}+7$

- Watch Video Solution

185. Integrate of following w.r.t.x.
$\int 3 \cos x d x$

D Watch Video Solution

186. Integrate of following w.r.t.x.

$$
\int \cos (x+2) d x
$$

187. Evaluate $\int \frac{1}{1-\sin x} d x$

- Watch Video Solution

188. $\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$ is equal to :

- Watch Video Solution

189. State and explan definite integral.

- Watch Video Solution

190. Evaluate the following integrals:
$\int_{1}^{5} x^{2} d x$
191. Evaluate the following integrals:
$\int_{R}^{\infty} \frac{G m_{1} m_{2}}{x^{2}} d x$

D Watch Video Solution
192. Evaluate the following integrals:
$\int_{u}^{v} m v d v$

- Watch Video Solution

193. Evaluate the following integrals:
$\int_{0}^{\pi / 2} \sin x d x$

D Watch Video Solution
194. Evaluate the following integrals:
$\int_{0}^{\pi / 2} \cos x d x$

- Watch Video Solution

195. Evaluate the following integrals:
$\int^{\pi / 2} \cos x d x$
$-\pi / 2$

- Watch Video Solution

196. Evaluate the following integrals:
$\int_{0}^{\pi / 2} \sin ^{2} x d x$

- Watch Video Solution

197. Discuss the terms origin.
198. Discuss origin, unit and direction for position measurement of an object in motion along a straight line.

- Watch Video Solution

199. Define displacement of a particle in linear motion in one dimension.

Does it depend upon the origin? Can actual distance travelled by object in the time interval t to t be greater than or equal to the magnitude of the displacement?

- Watch Video Solution

200. What is meant by uniform motion ? Give an example.
201. How do you define velocity?

- Watch Video Solution

202. What do you mean by +ve value of velocity or -ve value of velocity?

- Watch Video Solution

203. What will be the nature of x - t graph for a uniform motion?

- Watch Video Solution

204. What will be the nature of x - t graph for a uniform motion?

- Watch Video Solution

205. How does velocity-time graph give a geometrical way of calculating the distance covered from time t to time t^{\prime} ?

Watch Video Solution

206. Derive the formula to find position at t^{\prime} when the initial position at instant t is known as object is moving with uniform velocity.

- Watch Video Solution

207. Define Relative Velocity?. Show that the relative velocity of an object '2' relawtive to another object '1' moving in one dimension is $\left(v_{2}-v_{1}\right)$.

- Watch Video Solution

208. What is the significance of -ve value of instantaneous current?
209. Derive the following relations for uniformly accelerated motion. Velocity-time relation

(Watch Video Solution

210. Derive the following relations for uniformly accelerated motion.

Displacement-time relation.

- Watch Video Solution

211. For uniform accelerated motion, draw by graphical method establish the following equations of motion: $v^{2}=u^{2}+2 a S$

(Watch Video Solution

212. For uniform accelerated motion, draw by graphical method establish the following equations of motion : v=u+at

- Watch Video Solution

213. Derive the expression for distance traveled by an object in nth second of its motion.

- Watch Video Solution

214. Show that the slope of velocity-time graph for uniformly acceleratied motion is equal to the acceleration of the body.

- Watch Video Solution

215. Show that the distance covered by a particle having uniform acceleration in time interval ($\mathrm{t}^{\prime}-\mathrm{t}$) is the area under v-t graph for time t^{\prime}
and t .

- Watch Video Solution

216. Two parallel rail tracks run north-south. Train A moves north with a speed of $54 \mathrm{kmh}^{-1}$ and train B moves south with a speed of $90 \mathrm{~km}^{-1}$. What is the relative velocity of B with respect to A

- Watch Video Solution

217. Two parallel rail tracks run north-south. Train A moves north with a speed of $54 \mathrm{kmh}^{-1}$ and train B moves south with a speed of $90 \mathrm{~km}^{-1}$ relative velocity of ground with respect to B ?

- Watch Video Solution

218. Two parallel rail tracks run north-south. Train A moves north with a speed of $54 \mathrm{kmh}^{-1}$ and train B moves south with a speed of $90 \mathrm{kmh}^{-1}$
.Velocity of a monkey running on the roof of the train A against its motion (With a velocity of $18 \mathrm{kmh}^{-1}$ with respect to the train A) as observed by a man standing on the ground?

- Watch Video Solution

219. A car travels a distance from A to B at a speed of $60 \mathrm{kmh}^{-1}$ and returns to A at a speed of $30 \mathrm{kmh}^{-1}$. The average speed of the car for the whole journey is:

- Watch Video Solution

220. A body is dropped from rest at a height of 150 m and simultaneously another body is dropped from rest from a point 100 m above the ground.

What is their difference in height after they have fallen 2 s ? How does the differences in height vary with time.

- Watch Video Solution

221. A hundred metre sprinter increases her speed from rest unifromly at the rate of $1 \mathrm{~ms}^{-2}$ upto three-quarters of the total run and covers the last quarter with unifrom speed. How much time does she take to cover the first half, the second of the run?

- Watch Video Solution

222. A ballon is ascending at the rate of $14 m s^{-1}$ at a height of 98 m above ground when a packet is dropped from the balloon. After how much time and with what velocity does it reach the ground.

- Watch Video Solution

223. A car A is travelling on a straight level road with a uniform speed of $60 \mathrm{~km} / \mathrm{h}$. It is followed by another car B which in moving with a speed of $70 \mathrm{~km} / \mathrm{h}$. When the distance between then is 2.5 km , the car B is given a deceleration of $20 \mathrm{~km} / h^{2}$. After how much time will B catch up with A
224. A bus is beginning to move with aceleratino of $1 \mathrm{~ms}^{-2}$. A man wo wants to board it can run at $9 \mathrm{~ms}^{-1}$. Show that he3 can catch it in 8 sec ., if he is 40 m behind when it starts.

- Watch Video Solution

225. A body travels 200 cm in first two second and 220 cm in next four seconds. What will be the velocity at the end of the seventh second from the start?

- Watch Video Solution

226. A truck starts from rest with an acceleration of $1.5 \mathrm{~ms}^{-2}$ while a car 150 metre behind starts from rest with an acceleration of $2 \mathrm{~ms}^{-2}$. How long will it take beforeboth the truck and car side by side, and how much distance is travelled by each?
227. An express train is moving with a velocity v_{1}. Its driver finds another train is movig on the same track in the same direction with velocity v_{2}. To escape collision, driver applies a retardation a on the train. The minimum time of escaping collision be

- Watch Video Solution

228. A stone is dropped from the top of a tall cliff and n seconds later another stone is thrown vertically downwards with a velocity u m/s. How far below the top of the cliff the second stone will overtake the first?

- Watch Video Solution

229. A body starts from rest and moving with uniform acceeration of $4 m / s^{2}$ covers half of its total path during the last second of its motion.

Find the itme taken and the total distance covered.

Exercise

1. In which of the following examples of motion, can the body be considered approximately a point object:

- Watch Video Solution

2. Give an example where displacement of a particle is equal to the distance covered by it.

- Watch Video Solution

3. Is it true that a body is always at rest in a frame which is fixed to the body itself?
4. Does the speedometer of a car measure its average speed ?

- Watch Video Solution

5. What does the slope of position-time graph represents?

- Watch Video Solution

6. Which of the following is true for displacement ?
(i) it cannot be zero
(ii) Its magnitude is greater than the distance travelled by the object
(iii) Its magnitude is less than or equal to distance travelled by the object.

- Watch Video Solution

7. Read each statement below carefully and state with reasons and examples, if it is true or false :- A particle In one-dimensional motion:-
with zero speed may have non-zero velocity,

- Watch Video Solution

8. Discuss if a body moving with uniform velocity is in equilibriuim or not.

- Watch Video Solution

9. Can the velocity of an object be in a direction other than the direction of acceleration?

- Watch Video Solution

10. Can an object be at rest as well as in motion at the same time ?

- Watch Video Solution

11. Define motion in one, two and three dimensions giving one example of each.

- Watch Video Solution

12. State and explain the concept of displacement. Mention its characteristics.

- Watch Video Solution

13. Show that $x=x_{0}+v t$ or $s=v t$

- Watch Video Solution

14. Fill in the blanks:

Relative velocity \qquad .

