©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MBD

MOTION OF SYSTEM OF PARTICLES

AND RIGID BODY

Example

1. Can centre of mas of a body be outside it ? If
so, give example.
2. Where does the centre of mass of a rectangle lie?

- Watch Video Solution

3. Define centre of mass of a system of particles.
4. What is an isolated system?

(Watch Video Solution

5. Is it necessary that C.M. should always lie inside the body? Give one example.

D Watch Video Solution

6. Is centre of mass a reality?

D Watch Video Solution
7. What is the position vector of centre of mass of two particles of equal masses?

D Watch Video Solution

8. Is it correct to say that C.M. of a system of nparticles is always given by the average position vectors of the consituent particles? If not, when is this statement true?
9. Can centre of mass of a body coincide with geometrical centre of the body?

- Watch Video Solution

10. Where does the centre of mass of a rectangle lie?
(D) Watch Video Solution
11. If one of the particle is heavier than the other, to which side will their centre of mass shift?

D Watch Video Solution

12. Is torque a scalar or a vector quantity?

D Watch Video Solution
13. What is S.I. unit of torque?

D Watch Video Solution

14. What is torque ? Give its S.I. unit.

- Watch Video Solution

15. Which physical quantities are expressed by
the following? Rate of change of angular moementum.

D Watch Video Solution
16. Which physical quantities are expressed by the following? Moment of lineaer momentum.

- Watch Video Solution

17. What is law of conservation of momentum

$?$

D Watch Video Solution

18. A body is rotating, it is necessary being acted upon by an exteral torque?

D Watch Video Solution

19. What is the difference between torque and work?
20. What is physical meaning of angular momentum?

- Watch Video Solution

21. What is lever arm?

- Watch Video Solution

22. What is the relation between torque and
power?

- Watch Video Solution

23. How torque is related to angular momentum?

D Watch Video Solution

24. How angular momentum related to areal
velocity?

- Watch Video Solution

25. Which rule is used for finding direction of

torque?

- Watch Video Solution

26. The cap of the pen can be easily opened with the help of tw fingers than with one finger. Explain why.

D Watch Video Solution

27. Why do all helicopters have two properllers?

- Watch Video Solution

28. Define moment of inertia

D Watch Video Solution

29. On what factors the radius of gyration depend.

- Watch Video Solution

30. On what factors does the moment of inertia depend?

D Watch Video Solution

31. Draw a graph between moment of inertia and radius of gyration.
32. Is there any difference between moment of inertia and rotational inertia?

- Watch Video Solution

33. Does M.I. change with change of the axis of rotation?

D Watch Video Solution

34. Why are spokes fitted in a cycle wheel?
35. About which axis of a body is its moment of inertia the least?

D Watch Video Solution

36. How does M.I. change with speed of rotation.

- Watch Video Solution

37. Two satellites of equal masses are revolving around at different heights. Will their moment of inertia same or different?

- Watch Video Solution

38. What is the moment of inertia of a ring

- Watch Video Solution

39. What is the moment of inertia of a disc about their diameters?
40. A disc is recast into hollow and thin cylinder of same radius, which will have larger moment of inertia.

- Watch Video Solution

41. An electric drill comes to rest quicker than
an electric grinder after the power is switched off. Why.

Watch Video Solution

42. Give the location of the centre of mass of a
:- sphere.

(Watch Video Solution

43. Give the location of the centre of mass of a
:- cylinder.

- Watch Video Solution

44. Give the location of the centre of mass of a
:- cylinder.

D Watch Video Solution
45. Give the location of the centre of mass of a
:- ring.

- Watch Video Solution

46. Give the location of the centre of mass of a
:- cube, each of uniform mass density. Does the
centre of mass of a body necessarily lie inside the body?

D Watch Video Solution

47. In the HC1 molecule, the separation between the nuclei of the two atoms is about $1.27 \stackrel{\circ}{A}\left(1 \stackrel{\circ}{A}=10^{-10} m\right)$. Find the approximate
location of the CM of the molecule, given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus.

Watch Video Solution

48. A child sits stationary at one end of a long trolley moving uniformly with a speed V on a smooth horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the speed of the CM of the (trolley + child) system ?

- Watch Video Solution

49. Show that the area of the triangle contained between the vectors \vec{a} and \vec{b} is one half of the magnitude of $\vec{a} \times \vec{b}$.

D Watch Video Solution

50. Show that $a .(b \times c)$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors $, \mathrm{a}, \mathrm{b}$ and c .
51. Find the components along the x, y, z axes of the angular momentum 1 of a particle,
whose position vector is r with components x,
y, z and momentum is p with components
p_{x}, p_{y} and p_{z}. Show that if the particle moves
only in the $x-y$ plane the angular momentum
has only a z-component.

D Watch Video Solution

52. Two particles, each of mass mand speed v, travel in opposite directions along parallel
lines separated by a distance d. Show that the vector angular momentum of the two particle system is the same whatever be the point about which the angular momentum is taken.

D Watch Video Solution

53. A non-uniform bar of weight W is suspended at rest by two strings of negligible weight as shown in Fig.7.39. The angles made by the strings with the vertical are 36.9° and 53.1° respectively. The bar is 2 m long.

Calculate the distance d of the centre of gravity of the bar from its left end.

D Watch Video Solution

54. A car weighs 1800 kg. The distance between its front and back axles is 1.8 m . Its centre of gravity is 1.05 m behind the front axle. Determine the force exerted by the level ground on each front wheel and each back wheel.
55. Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.

D Watch Video Solution

56. Given the moment of inertia of a disc of mass M and radius R about any of its
diameters to be $M R^{2} / 4$, find its moment of inertia about an axis normal to the disc and passing through a point on its edge.

- Watch Video Solution

57. Torques of equal magnitude are applied to
a hollow cylinder and a solid sphere, both
having the same mass and radius. Hie cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre.

Which of the two will acquire a greater angular speed after a given time.

D Watch Video Solution

58. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 \mathrm{rads}^{-1}$.

The radius of the cylinder is 0.25 m . What is
the kinetic energy associated with the rotation
of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?
59. A child stands at the centre of a turntable with his two arms outstretched. The turntable is set rotating with an angular speed of $40 \mathrm{rev} / \mathrm{min}$. How much is the angular speed of the child if he folds his hands back and
thereby reduces his moment of inertia to $2 / 5$
times the initial value ? Assume that the turntable rotates without friction.
60. A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm .

What is the angular acceleration of the cylinder if the rope is pulled with a force of 30
N ? What is the linear acceleration of the rope ? Assume that there is no slipping.

- Watch Video Solution

61. To maintain a rotor at a uniform angular speed of $200 \mathrm{rads}^{-l}$, an engine needs to transmit a torque of 180 N m . What is the
power required by the engine? (Note: uniform
angular velocity in the absence of friction implies zero torque. In practice, applied torque is needed to counter frictional torque). Assume that the engine is 100% efficient.

D Watch Video Solution

62. From a uniform disk of radius R, a circular hole of radius $R / 2$ is cut out. The centre of the hole is at $R / 2$ from the centre of the
original disc. Locale the centre of gravity of the resulting flat body.

D Watch Video Solution

63. A metre stick is balanced on a knife edge at its centre. When two coins, each of mass 5 g are put one on top of the other at the 12.0 cm
mark, the stick is found to be balanced at 45.0 cm . What is the mass of the metre stick?
64. A solid sphere rolls down two different inclined planes of the same heights but different angles of inclination:- Will it reach the bottom with the same speed in each case?

D Watch Video Solution

65. A solid sphere rolls down two different inclined planes of the same heights but different angles of inclination:- Will it take longer to roll down one plane than the other?
66. A solid sphere rolls down two different inclined planes of the same heights but different angles of inclination:- Will it take longer to roll down one plane than the other?

D Watch Video Solution

67. A hoop of radius 2 m weighs 100 kg . It rolls
along a horizontal floor so that its centre of
mass has a speed of $20 \mathrm{~cm} / \mathrm{s}$. How much work has to be done to stop it?

- Watch Video Solution

68. The oxygen molecule has a mass of
$5.30 \times 10^{-26} \mathrm{~kg}$ and a moment of inertia of
$1.94 \times 10^{-46} \mathrm{kgm}^{2}$ about an axis through its
centre perpendicular to the lines joining the two atoms. Suppose the mean speed of such a molecule in a gas is $500 \mathrm{~m} / \mathrm{s}$ and that its kinetic energy of rotation is two thirds of its
kinetic energy of translation. Find the average angular velocity of the molecule.

D Watch Video Solution

69. A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane the centre of mass of the cylinder has a speed of $5 \mathrm{~m} / \mathrm{s}$:- How far will the cylinder go up the plane?

- Watch Video Solution

70. A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane the centre of mass of the cylinder has a speed of $5 \mathrm{~m} / \mathrm{s}$:- How long will it take to return to the bottom?

- Watch Video Solution

71. As shown in the given figure. the two sides of a step ladder BA and CA are 1.6 m long and hinged at A.A rope DE, 0.5 m is tied half way up. A weight 40 kg is suspended from a point

F, 1,2 m from B along the ladder BA. Assuming the floor to be frictionless and neglecting the weight of the ladder, find the tension in te rope and forces exerted by the floor on the ladder. (Take $g=9.8 m s^{-2}$) (Hint: consider the equilibrium of each side of the ladder separately).

- Watch Video Solution

72. A man stands on a rotating platform, with
his arms stretched horizontally holding a 5 kg
weight in each hand. The angular speed of the platform is 30 revolutions per minute. The man then brings his arms close to his body with the distance of each weight from the axis
changing from 90 cm to 20 cm . The moment of inertia of the man together with the platform may be taken to be constant and equal to
$7.6 \mathrm{kgm}^{2}$:- What is his new angular speed?
(Neglect friction.)

D Watch Video Solution

73. A man stands on a rotating platform, with his arms stretched horizontally holding a 5 kg weight in each hand. The angular speed of the platform is 30 revolutions per minute. The man then brings his arms close to his body with the distance of each weight from the axis changing from 90 cm to 20 cm . The moment of
inertia of the man together with the platform
may be taken to be constant and equal to
$7.6 \mathrm{kgm}^{2}$:- Is kinetic energy conserved in the process? If not, from where does the change come about?

- Watch Video Solution

74. A bullet of mass 10 g and speed $500 \mathrm{~m} / \mathrm{s}$ is
fired into a door and gets embedded exactly at
the centre of the door. The door is 1.0 m wide and weighs 12 kg . It is hinged at one end and
rotates about a vertical axis practically without friction. Find the angular speed of the door just after the bullet embeds into it.

D Watch Video Solution

75. Two dics of moments of inertia I_{1} and I_{2}
about their respective axes (normal to the disc
and passing through the centre), and rotating
with angular speed ω_{1} and ω_{2} are brought
into contact face to face with their axes of
rotation coincident. Find the angular speed of the two-disc system.

D Watch Video Solution

76. The discs of moments of inertia I_{1} and I_{2} about their respective axis (normal to the disc and passing through the centre), and rotating
with agnular speeds ω_{1} and ω_{2} are brought into contact face to face with their axis of rotation coincident.

Show that the kinetic energy of the combined
system is less than the sum of the initial kinetic energies of the two discs. How do you account for this loss in energy? Take $\omega_{1} \neq \omega_{2}$.

D Watch Video Solution

77. Prove the theorem of perpendicular axes.
(Hint: Square of the distance of a pint (x, y) in the $x-y$ plane from an axis perpendicular to the plane through the origin is $x^{2}+y^{2}$)

D Watch Video Solution

78. Prove the theorem of parallel axes.

D Watch Video Solution

79. Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined plane of a height h is given by $v^{2}=\frac{2 g h}{1+k^{2} / R^{2}}$
using dynamical
consideration (i.e. by consideration of forces
and torques). Note k is the radius of gyration
of the body about its symmetry axis, and R is
the radius of the body. The body starts from rest at the top of the plane.

D Watch Video Solution

80. A disc rotating about its axis with angular speed ω_{0} is placed lightly (without any translational push) 011 a perfectly frictionless table. The radius of the disc is R . What are the linear velocities of the points A, B and C on the disc shown in Fig. 7.41? Will the disc roll in the

direction indicated?

D Watch Video Solution

81. Explain why friction is necessary to make the disc roll in the direction indicated.

Given the direction of friction force at B, and
the sense of frictional torque, before perfect rolling begins.

D Watch Video Solution

82. Explain why friction is necessary to make the disc roll in the direction indicated.

Given the direction of friction force at B, and the sense of frictional torque, before perfect rolling begins.
83. A solid disc and a ring, both of radius 10 cm
are placed on a horizontal table
simultaneously, with initial angular speed equal to $10 \pi \mathrm{rads}^{-1}$. Which of the two will start to roll earlier ? The co-efficient of kinetic friction is $\mu_{k}=0.2$.

D Watch Video Solution

84. A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°.

The co-efficient of static friction $\mu s=0.25$:-

How much is the force of friction acting on the cylinder ?

D Watch Video Solution

85. A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°.

The co-efficient of static friction $\mu s=0.25$:-

What is the work done against friction during rolling ?
86. A cylinder of mass 10 kg and radius 15 cm is
rolling perfectly on a plane of inclination 30°.

The co-efficient of static friction $\mu s=0.25$:- If
the inclination θ of the plane is increased, at what value of θ does the cylinder begin to skid, and not roll perfectly ?

D Watch Video Solution

87. Read each statement below carefully, and state, with reasons, if it is true or false :-

During rolling, the force of friction acts in the
same direction as the direction of motion of the CM of the body.

D Watch Video Solution

88. Read each statement below carefully, and state, with reasons, if it is true or false :- The instantaneous speed of the point of contact during rolling is zero.
89. Read each statement below carefully, and
state, with reasons, if it is true or false :- The instantaneous acceleration of the point of contact during rolling is zero.

D Watch Video Solution

90. Read each statement below carefully, and
state, with reasons, if it is true or false :- For perfect rolling motion, work done against friction is zero.
91. Read each statement below carefully, and
state, with reasons, if it is true or false :- A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling) motion.

D Watch Video Solution

92. Separation of mmotion of a systme of particles into motion of the centre of mass
and motion about the centre of mass
Show $\vec{p}=\vec{p}_{i}+m_{i} \vec{V}$ where \vec{p}_{i} is the momentum of the ith particle

D Watch Video Solution

93. Separation of mmotion of a systme of particles into motion of the centre of mass and motion about the centre of mass

Show $\mathrm{K}=\mathrm{K}+1 / 2 M V^{2}$, where k is the total
kinetic energy of the system of particles, K is
the total kinetic energy of the system when
the particle velcoities are taken with respect to the centre of mass and $M V^{2} / 2$ is the kinetic energy of the translation of the system as a whole (i,e of the centre of mass motion of the system).

D Watch Video Solution

94. Separation of mmotion of a systme of particles into motion of the centre of mass and motion about the centre of mass

Show $\quad \vec{L}=L=\vec{L}+\vec{M} R \times \vec{V} \quad$ where
$\vec{L}=\Sigma \vec{r}_{i} \times \vec{p}_{i}$ is the angular momentum of
the system about the centre of mass with velocities taken relative to the centre of mass.

Remember $\vec{r}_{i}=\vec{r}_{i}-\vec{R}$, rest f the notation
is the standard notation used in the chapter.
Note \vec{L} and $\vec{M} R \times \vec{V}$ can be said to be angular moemnta respectively about and of the centre of mass of the system of particles.

- Watch Video Solution

95. Separation of Motion of a system of
particles into motion of the centre of mass
and motion about the centre of mass :- Show

Further, showt $\frac{\widehat{d L^{\prime}}}{d t}=$ tau'_(ext)where
tau'_(ext)' is the sum of all external torques
acting on the system about the centre of mass.

96. For which of the following does the centre

of mass lie outside the body?

A. A pencil
B. A shotput
C. A dice
D. A bangle

Answer:

D Watch Video Solution

97. Which of the following points is the likely

position of the centre of mass of the system shown in the figure.

A. A
B. B
C. C
D. D

Answer:

D Watch Video Solution

98. A particle of mass m is moving in yz-plane
with a uniform velocit v with its trajectory
running paralel to + ve y-axis and intersecting
z-axis at $z=a$ show in the figure. The change in
its angular momentum about the origin as it
bounces elastically from a wal at $y=$ constant
is

A. $m v a \hat{e}_{x}$
B. $2 m v a \hat{e}_{x}$
C. $y m v \hat{e}_{x}$
D. $2 y m v \hat{e}_{x}$

Answer:

D Watch Video Solution

99. When a disc rotates with uniform angular velocity, which of the following is not true?
A. The sense of rotation remains same.
B. The orientation of the axis ofrotation
remains same.
C. The speed of rtation is non-zero and remains same.
D. The angular acceleration is non-zero and remains same.

Answer:

D Watch Video Solution
100. The angular acceleration is non-zero and remains same.
101. A uniform square plate has a small piece Q
of an irregular shape removed and glued to
the enre of the plate leaving a hole behind shown in the figure.

The moment of inretia about the z-axis is then
A. increased
B. decreased
C. the same
D. changed in unpredicted manner.

Answer:

D Watch Video Solution

102. A uniform square plate has a small piece

Q of an irregular shape removed and glued to
the enre of the plate leaving a hole behind shown in the figure.

the CM of the late is now in the following quadrant of $x-y$ plane.
A. I
B. II
C. III
D. IV

Answer:
103. The density of a non-uniform rod of length 1 m is given by $\rho(x)=a\left(1+b x^{2}\right)$
where a and b are constant and $0 \leq x \leq 1$.

The center of mass of the rod will be at

$$
\begin{aligned}
& \text { A. } \frac{3(2+b)}{4(3+b)} \\
& \text { B. } \frac{4(2+b)}{3(3+b)} \\
& \text { C. } \frac{3(3+b)}{4(2+b)} \\
& \text { D. } \frac{4(3+b)}{3(2+b)}
\end{aligned}
$$

Answer:

- Watch Video Solution

104. A Merry-go-round made of a ring-like
platform of radius R and mass M is revolving
with angular speed ω. A person of mass M is
standing on it. At one instant, the person
jumps off the round radially away from the center of the round (as seen from the center of the round (as seen from the round). The speed of the round afterwards is
A. 2ω
B. ω
C. $\frac{\omega}{2}$
D. 0

Answer:

D Watch Video Solution

105. Choose the correct alternatives
A. For a general rotational motion, angular momentum \vec{L} and angular velocity $\vec{\omega}$ need not be paralel.
B. For a rotational motion about a fixed axis angular momentum \vec{L} and angular velocity $\vec{\omega}$ are always parallel.
C. For a general translational motion.
momentum \vec{P} and velocity \vec{v} are always parallel.
D. For a general translational motion, acceleration \vec{a} and velocity \vec{v} are always parallel.

Answer:

D Watch Video Solution

106. Two particles, each of mass mand speed v, travel in opposite directions along parallel lines separated by a distance d. Show that the vector angular momentum of the two particle
system is the same whatever be the point about which the angular momentum is taken.
A. Angular momentum \vec{l}_{1} of particle 1 about A is $\vec{l}_{1}=m \vee e c d_{1} \odot$
B. Angular momentum l_{2} of particle 2 about A is $\vec{l}_{2}=m \vee e c r_{2} \odot$
C. Total angular moment of the system
about A is $\vec{l}=m v\left(\vec{r}_{1}+\vec{r}_{2}\right) \otimes$.
D. Total angular momentum of the system
about A is $\vec{l}=m v\left(d_{2}-d_{1}\right) \otimes$
represents a unit vector coming out of
the page. \otimes represents a unit vector going into the page.

Answer:

D Watch Video Solution

107. The net external torque on a system of particles about an axis is zero. Which of the following are compatible with it?
A. The forces may be acting radially from a
point on the axis.
B. The forces may be acting on the axis of rotation.
C. The forces may be acting parallel to the
axis of rotation

D. The torque caused by some forces may

be equal and opposite to that caused by
other forces.

(D) Watch Video Solution

108. With reference to (show in the figure) of a
cube of edge a and mass m, state whether the
following are true or false. (O is the cetre of
the cube).

A. The moment of inertia of cube about z-
axis is $I_{z}=I_{x}+I_{y}$
B. The moment of inertia of cube about z^{\prime}
is $I_{z}=I_{Z}+\frac{m a^{2}}{2}$
C. The moment of inertia of cube about $z^{\prime \prime}$
is $=I_{z}+\frac{m a^{2}}{2}$
D. $I_{x}=I_{y}$

Answer:

109. The centre of gravity of a body on the earth coincides with its centre of mass for a
'small' object whereas for an 'extended' object
it may not. What is the quantitative meaning of 'small' and 'extended' in this regard? For whicih of the following the two coincides? A building, a pond, a lake, a mountain??

D Watch Video Solution

110. Why does a solid sphere have smaller moment of inertia than a hollow cylinder of
same mass and radius, about an axis passing through their axes of symmetry?

D Watch Video Solution

111. The variation of angular position θ, of a point on a rotating rigid body, with time t is shown in the figure. Is the body rotating
clockwise or anti-clockwise?

D Watch Video Solution

112. The vector sum of a system of noncollinear forces acting on a rigid body is gives to be non-zero. If the vector sum of all the
torques due to the system of forces about a certain point is found to be zero, does this mean that it is necessarily zero about any arbitrary point?

D Watch Video Solution

113. A wheel in uniform motion about an axis
passing through its centre and perpendicular to its plane is considered to be in mechanical
(translational plus rotational equilibrium because no net external force or torque is
required to sustain its motion. However, the particles that constitute the wheel do experience a centripetal acceleration directed towards the centre. How do you reconcile this
fact with the wheel being in equilibrium?

How would you set a half - wheel into uniform motion about an axis passing through the centre of mass of the wheel and perpendicular to its plane? Wil you require external forces to sustain the motion?
114. A door is hinged at one end and is free to rotate about a vertical axis. (show in the
figure) Does its weight cause any torque about
this axis ? Give reasons for your answer.

- Watch Video Solution

115. ($n-1$) equal point masses each of mass m are placed at the vertices of a regular n polygon. The vacant vertex has a position vector \vec{a} with respect to the center of the polygon. Find the position vector of centre of mass.

D Watch Video Solution

116. Find the cente of mass of a uniform halfdisc
117. Find the centre of mass of a uniform quarter-disc.

- Watch Video Solution

118. Two dics of moments of inertia I_{1} and I_{2}
about their respective axes (normal to the disc and passing through the centre), and rotating
with angular speed ω_{1} and ω_{2} are brought into contact face to face with their axes of
rotation coincident. Does the law of conservation of angular momentum apply to the situation? Why?

- Watch Video Solution

119. Two dics of moments of inertia I_{1} and I_{2}
about their respective axes (normal to the disc
and passing through the centre), and rotating
with angular speed ω_{1} and ω_{2} are brought
into contact face to face with their axes of
rotation coincident. Find the angular speed of the two-disc system.

D Watch Video Solution

120. Two dics of moments of inertia I_{1} and I_{2}
about their respective axes (normal to the disc and passing through the centre), and rotating
with angular speed ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident. Calculate the loss in kinetic energy of the system in the process.
121. Two dics of moments of inertia I_{1} and I_{2}
about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident. Account for this loss.

- Watch Video Solution

122. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. it is placed on a horizontal table. The coefficient of kinetic friction is μ_{k}. What was the velocity of its centre of mass before being brought in contact with the table?

- Watch Video Solution

123. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. it is
placed on a horizontal table. The coefficient of kinetic friction is μ_{k}. What was the velocity of its centre of mass before being brought in contact with the table?

D Watch Video Solution

124. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. it is
placed on a horizontal table. The coefficient of
kinetic friction is μ_{k}. What was the velocity of
its centre of mass before being brought in contact with the table?

D Watch Video Solution

125. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. it is placed on a horizontal table. The coefficient of kinetic friction is μ_{k}. Which force is responsible for the effects in what happens to
the linear velocity of a point on its rim when placed in contact with the table? and What
happens to the linear speed of the centre of mass when disc is placed in contact with the table?

D Watch Video Solution

126. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. it is placed on a horizontal table. The coefficient of kinetic friction is μ_{k}. What condition should be satisfied for rolling to begin?
127. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. it is placed on a horizontal table. The coefficient of kinetic friction is μ_{k}. Calculate the time taken for the rolling to begin.

D Watch Video Solution

128. Two cylindrical hollow drums of radii and
$2 R$, and of a common height h, are rotating with angular velocities ω (anticlockwise) and ω
(clockwise), respectively, Their axes, fixed are parallel and in a horizontal plane separated by $(3 R+\delta)$. They are now brought in contact ($\delta \rightarrow 0$). Show the frictional forces just after contact.

D Watch Video Solution

129. Two cylindrical hollow drums of radii and
$2 R$, and of a common height h, are rotating with angular velocities ω (anticlockwise) and ω
(clockwise), respectively, Their axes, fixed are
parallel and in a horizontal plane separated by
$(3 R+\delta)$. They are now brought in contact
$(\delta \rightarrow 0)$. Identify forces and torques external to the system just after contact.

D Watch Video Solution

130. Two cylindrical hollow drums of radii and $2 R$, and of a common height h, are rotating with angular velocities ω (anticlockwise) and ω
(clockwise), respectively, Their axes, fixed are parallel and in a horizontal plane separated by
$(3 R+\delta)$. They are now brought in contact $(\delta \rightarrow 0)$. What would be the ratio of final angular velocities when fiction ceases?

D Watch Video Solution

131. A uniform square plate S (side c) and a
uniform rectangular plate R (sides b, a) have identical areas and masses (show in the figure).

Show
that $I_{z R} / / I_{-}(z S)>1^{\prime}$

D Watch Video Solution

132. A uniform square plate S (side c) and a
uniform rectangular plate R (sides b, a) have identical areas and masses (show in the figure).

Show
that $I_{y R} / / I_{-}(y S)<1$ '

D Watch Video Solution

133. A uniform square plate S (side c) and a
uniform rectangular plate R (sides b, a) have identical areas and masses (show in the figure).

Show
that $I_{z R} / / I_{-}(z S)>1^{\prime}$

- Watch Video Solution

134. A uniform disc of radius R, is resting on a
table on its rim. The coefficent of friction between disc and table is μ (show in the figure). Now the disc is pulled with a force F.

What is the maximum value of F for which the

disc rolls without slipping?

- Watch Video Solution

135. If two bodies are moving towards each other without any external forces and join, then centre of mass
A. moves
B. remains stationary

C. moves away from bodies

D. none of the above

Answer:

D Watch Video Solution

136. Two bodies of different masses of 2 kg and

4 kg are moving with velocities $2 m s^{-1}$ and $10 \mathrm{~ms}^{-1}$ towards each other due to mutual gravitational attraction. What is velocity of their centre of mass?
A. $5 m s^{-1}$
B. $6 m s^{-1}$
C. $8 m s^{-1}$
D. zero

Answer:

D Watch Video Solution

137. A solid sphere is rotating in free space. If
the radius of the sphere is increased keeping
mass same, which one of the following will nt be affected?
A. Moment of intertia
B. rotational kinetic energy
C. Angular momentum
D. Angular velocity

Answer: Rotational K.E.

D Watch Video Solution

138. Which of these statements is not correct?

A. Moment of inertia is dependent on
shape and size of the body.
B. Moment of inertia depends on choice of axes.
C. Moment of inertia does not depend on
mass of body.
D. none of the above
139. The mass of a flywheel is concentrated at its rim so as to have
A. a large moment of inertia
B. a small moment of inertia
C. a stable moment of inertia
D. an unstable equilibrium

Answer:

140. If a body is moving in a circle of radius r centimetre at a constant speed of $\mathrm{vcms}{ }^{-1}$, then its angular velocity is

$$
\text { A. } \frac{v^{2}}{r}
$$

B. vr
C. $\frac{v}{r}$
D. $\frac{r}{v}$

Watch Video Solution

141. A closed tube, partly filled with a liqyid and set horizontal, is rotated about a vertical axis passing through its centre. IN the process, the moment of inertia of the system about its axis would
A. always increase
B. always decrease
C. remain constant

D. increase if tube is less than half filled but

otherwise decrease.

Answer:

D Watch Video Solution

142. When a torque acting upon a system is
zero, which of the following will be constant?
A. Force
B. Angular momentum

C. Linear impulse

D. None of these

Answer:

- Watch Video Solution

143. A rigid body is rotating about an axis. To
stop the rotation, we have to apply
A. pressure
B. force

C. momentum

D. torque

Answer:

- Watch Video Solution

144. A couple produces a

A. pure linear motion

B. pure rotational motion
C. both linear and rotational motion no

motion

D. no motion

Answer:

D Watch Video Solution
145. Angular momentum is the vector product of
A. linear momentum and radius vector
B. moment of inertia and angular acceleration
C. linear momentum and angular velocity
D. linear velocity and radius vector.

Answer:

D Watch Video Solution

146. A planet is revolving round the sun in elliptical orbit. The maximum and minimum distances of the planet from the sun are
$2 \times 10^{2} \mathrm{~m}$ and $2 \times 10^{10} \mathrm{~m}$ respectively. The speed of the planet when it is nearest to sun
is $2 \times 10^{15} \mathrm{~ms}^{-1}$ What is the speed when it is farthest to the sun?
A. $1.33 \times 10^{9} \mathrm{~ms}^{-1}$
B. $1.51 \times 10^{7} \mathrm{~ms}^{-1}$
C. $1.33 \times 10^{5} \mathrm{~ms}^{-1}$
D. $2 \times 10^{7} \mathrm{~ms}^{-1}$

Answer:

147. A particle moves in a circle of radius r. In
half the period of revolution, its displacement and distance covered are
A. $2 r, 2 \pi r$
B. $r \sqrt{2}, \pi r$
C. $2 r, \pi r$
D. $r, \pi r$

Answer:

- Watch Video Solution

148. A car of mass 1000 kg moves on a circular road with a speed of $20 \mathrm{~ms}^{-1}$. Its direction changes by 90° after travelling 628 m on the road. The centripetal force acting on the car is
A. 1000 N
B. 1500 N
C. 2000 N
D. 3000 N
149. A particle revolves round a circular path.The centripetal acceleration of the particle is inversely proportional to:
A. along circumference of the circle
B. along the tangent
C. along the radius
D. zero centripetal
150. Fill in the blanks:

When no external force acts on a system the total _____ of the system remains constant.

- Watch Video Solution

151. Fill in the blanks:

Centre of mass can lie _ the body.
152. Fill in the blanks:

Torque is the product of force and __ distance from the axis of rotation.

D Watch Video Solution

153. Fill in the blanks:

Mass of a body is of inertia of the
body to motion.

154. Fill in the blanks:

When angular momentum is conserved -what does it mean?

- Watch Video Solution

155. Fill in the blanks:

Radius of gyration of a body is
constant quantity.

D Watch Video Solution
156. Fill in the blanks:

Unit of MI in $\mathrm{SI}=$

- Watch Video Solution

157. What is the position vector of centre of mass of two particles of equal masses?

D Watch Video Solution

158. What is an isolated system?
159. What is dimensional formula of angular momentum ? What are its units? Is it scalar quantity?

- Watch Video Solution

160. Why does cream collect in the middle when milk is churned up?
161. Prove that
$|\vec{A} \cdot \vec{B}|^{2}+|\vec{A} \times \vec{B}|^{2}=A^{2} B^{2}$

- Watch Video Solution

162. A wrench with large arm is preferred.

Why?

- Watch Video Solution

163. On what factors does the moment of inertia depend?

D Watch Video Solution
164. Define perpendicular axis theorem of moment of inertia.

D Watch Video Solution
165. Define parallel axis theorem.

- Watch Video Solution

166. Define radius of gyration.

D Watch Video Solution

167. Under what conditions angular momentum of a moving body is zero?

- Watch Video Solution

168. Give mathematical expression of centre of mass of N-particle system.

D Watch Video Solution

169. Can centre of mass of a body coincide with geometrical centre of the body?

D Watch Video Solution

170. Torque and work are both defined as force times distance. How do they differ?

- Watch Video Solution

171. In a flywheel most of mass is concentrated at the rim. Explain why?
172. If the ice on the polar caps of the earth melts, how will it affect the duration of the day? Explain.

- Watch Video Solution

173. Is there any difference between moment of inertia and rotational inertia?

- Watch Video Solution

174. Why does a cyclist lean to one side while going along a curve? In which direction does he lean?

D Watch Video Solution

175. Moment of inertia of the sphere about its diameter is $\frac{2}{5} M r^{2}$. What is the moment of inertia about an axis \perp to point of intersection of two diameters?
176. Can centre of mas of a body be outside it ?

If so, give example.

- Watch Video Solution

177. Center of mass of a body always lies at a point, where there is no mass?

D Watch Video Solution
178. Can centre of mas of a body be outside it ? If so, give example.

D Watch Video Solution

179. Two solid spheres of same mass are made of metals of different densities. Which one of
them has a larger moment of inertia about a diameter?
180. Two sphere are of same mass and same external radius, one is solid and the other is hollow. Which one of them has larger moment of inertia about its diameter?

D Watch Video Solution

181. If no external torque acts on a body. will
its angular velocity remain conserved?
182. A body is rotating, it is necessary being acted upon by an exteral torque?

- Watch Video Solution

183. Moment of inertia of a sphere about its
diameter is $\frac{2}{5} M R^{2}$. What is the radius of gyratin about that axis?
(D) Watch Video Solution
184. A bucket containing water is rotated in a
vertical circle. Explain why does not water fall down.

D Watch Video Solution

185. During motion in the vertical circle, what
is the difference in tension at the top and bottom of the circle?

D Watch Video Solution

186. What is rotational analogue of mass?

D Watch Video Solution

187. What happens when a spinning balletdancer draws her arms close to her chest?

D Watch Video Solution

188. How a swimmer jumping from a height is
able to increase the number of loops made in
the air?

- Watch Video Solution

189. Do the internal forces affect the location of the centre of mass?

D Watch Video Solution

190. The centre of gravity of a body on the earth coincides with its centre of mass for a
'small' object whereas for an 'extended' object
it may not. What is the quantitative meaning of 'small' and 'extended' in this regard? For whicih of the following the two coincides? A building, a pond, a lake, a mountain??

D Watch Video Solution

191. Why does a solid sphere have smaller moment of inertia than a hollow cylinder of same mass and radius, about an axis passing through their axes of symmetry?
192. The variation of angular position θ, of a point on a rotating rigid body, with time t is shown in the figure. Is the body rotating clockwise or anti-clockwise?
\square
193. Center of mass of a body always lies at a point, where there is no mass?

D Watch Video Solution
194. Can centripetal force produce rotation?

D Watch Video Solution

195. What is S.I. unit of torque?
196. Is radius of gyration of a body a constant quantity?

D Watch Video Solution

197. Does M.I. change with change of the axis of rotation?

- Watch Video Solution

198. Two sphere are of same mass and same external radius, one is solid and the other is hollow. Which one of them has larger moment of inertia about its diameter?

D Watch Video Solution

199. What are the dimensions and unit of
moment of inertia?

D Watch Video Solution
200. Does the centre of mass of a system of two particles lie on the line joining the two particles?

- Watch Video Solution

201. The centre of mass of a body___ on the distribution of mass inside it.

D Watch Video Solution

202. _____ is a useful mathematical concept
to simplify the study of the motion of a rigid body.

D Watch Video Solution

203. The centre of mass of a system of particles moves as if all the _____ of the system was concentrated at the _______ of mass and all the external forces acting on the system were applied directly at this point.
204. If $F_{-}(e x t)=0$, the c.m. of a system moves with ______ velocity.
(D) Watch Video Solution
205. In fact, there is at the location of centre of mass.
206. A body is in mechanical equilibrium if don't change with time.

D Watch Video Solution

207. Is centre of mass a reality?

- Watch Video Solution

208. Define a rigid body.
209. Prove that the time rate of change of the angular momentum of a particle is equal to the torque acting on it.

- Watch Video Solution

210. Deduce an expression for rectangular components of torque in the three dimensions.

211. Show that for an isolated system, centre of

 mass moves with a uniform velocity along a straight path.
- Watch Video Solution

212. Show that torque is due to transverse component only and does not depend on the radial component.

213. What is law of conservation of momentum

?

(Watch Video Solution
214. Define moment of inertia

D Watch Video Solution
215. Define moment of inertia
216. On what factors the radius of gyration depend.

D Watch Video Solution
217. Discuss general motion of a rigid body.

D Watch Video Solution

218. What is law of conservation of momentum
?

- Watch Video Solution

219. Prove the theorem of parallel axes.

- Watch Video Solution

220. State Theorem of perpendicular axis.

- Watch Video Solution

221. Show that the vector
$\vec{A}=-6 \hat{i}+9 \hat{j}-12 \hat{k}$
$\Longrightarrow 2 \hat{i}-3 \hat{j}+4 \hat{k}$ are parallel to each other.

- Watch Video Solution

222. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$.

What can you conclude about the vectors \vec{a} and \vec{b} ?
223. If the angular momentum is conserved in
a system whose MI is decreased, will its rotational KE be also conserved? Explain.

D Watch Video Solution

224. Three identical spheres each of radius R are placed touching each oother on a horizontal table. Where is the centre of mass of the system located?

225. Establish the relation $\mathrm{L}=I \omega$

- Watch Video Solution

226. What is law of conservation of momentum ?

D Watch Video Solution

227. It is easier to balance a bicycle in motion.

Why?

- Watch Video Solution

228. Deduce the relation between torque and moment of inertia.

- Watch Video Solution

229. What is the position vector of centre of mass of two particles of equal masses?

- Watch Video Solution

230. Determine the co-ordinates of centre of mass of a system of n particles.

- Watch Video Solution

231. Illustrate with examples, the concept of centre of mass.

- Watch Video Solution

232. Define a rigid body.
233. Discuss general motion of a rigid body.

- Watch Video Solution

234. Define torque. Discuss the rotational motion of a single particle in a plane.

- Watch Video Solution

235. Derive expression for torque in cartesian co-ordinate system.

D Watch Video Solution
236. Show that $T_{z}=x F_{y}-y F_{x}$

D Watch Video Solution

237. Derive expression for torque in polar coordinates.

- Watch Video Solution

238. Show that $\tau=F$. d. where τ is torque, F
is force applied and d is the \perp distance of
the particle from the axis of rotation called
lever arm.

D Watch Video Solution

239. Deduce an expression for rectangular components of torque in the three

D Watch Video Solution

240. What is the significance of torque?

D Watch Video Solution
241. How torque is related to angular momentum?

- Watch Video Solution

242. Derive the expression for angular momentum of a particle in two dimensions for in a plane).

D Watch Video Solution

243. Show that $L_{z}=x p_{y}-y p_{x}$, where letters
have their usual meanings.

D Watch Video Solution
244. Derive the expression for angular momentum in three dimensions.

D Watch Video Solution
245. Find the relation between angular momentum and lever arm.

- Watch Video Solution

246. Show that the angular momentum is the product of linear momentum and \perp distance from the axis of rotation (lever arm) i.e. $L=p . d$

- Watch Video Solution

247. Show that angular momentum is due to transverse component and does not depend on the radial component i.e. $L=r p_{\theta}$
248. What is geometrical meaning of angular momentum in two dimensions?

- Watch Video Solution

249. State Keplers' laws of planetary motion.

- Watch Video Solution

250. How torque is related to angular momentum?
251. Derive an expression for kinetic energy of rotation.

- Watch Video Solution

252. Define moment of inertia

- Watch Video Solution

253. Compare relations in linear motion and rotational motion.

D Watch Video Solution

254. Find the moment of inertia of a thin circular ring
about an axis passing through the centre and perpendicular to the plane of the ring
255. Derive the expression for moment of inertia of a circular disc
about the diameter of the disc.

D Watch Video Solution

256. Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $M R^{2} / 4$, find its moment of inertia about an axis normal to the disc and passing through a point on its edge.
257. Find the moment of inertia of a thin circular ring about a tangent \perp to the plane of the ring.

D Watch Video Solution

258. Derive the expression for moment of inertia of a circular disc
about an axis passing through its centre and perpendicular to its plane

Watch Video Solution

259. Derive the expression for moment of inertia of a circular disc about the diameter of the disc.

D Watch Video Solution

260. Derive the expression for moment of inertia of a circular disc about an axis tangential to the plane of the disc.
261. Derive the expression for moment of inertia of a circular disc
about an axis passing through its centre and perpendicular to its plane

- Watch Video Solution

262. Find the expression for moment of inertia of a thin uniform rod
about an axis passing through its centre and perpendicular to its length

D Watch Video Solution

263. Find the expression for moment of inertia of a thin uniform rod
about an axis passing through its one end and perpendicular to its length.
264. Discuss Motion of Mass point on a string wound on cylinder.

- Watch Video Solution

265. Derive an expression for aceleration of a bdy moving down an inclined plane.

- Watch Video Solution

266. A 2 kg body and a 3 kg body are moving along X-axis. At a particular instnat, the 2 kg body is 1 m from the origin and has a velocity of $3 \mathrm{~ms}^{-1}$ and the 3 kg body is 2 m away from the origin has a velocity of $-1 m s^{-1}$. Find the position and velocity of the centre of mass.

D Watch Video Solution

267. A particle moves in a circle of radius r with constant angular velocity ω. What is the
change in velocity when the particle describe an angle of 90° ?

D Watch Video Solution

268. A cyclist speeding at $18 k m h^{-1}$ on a level road makes a sharp circular turn of radius 3 m
without reducing the speed. The coefficient of
static friction between the tyres and the road is 0.1 will the cyclist slip while taking the turn?
269. A small sphere rolls down without
slipping from the top of a track in a vertical
plane. The track has an elevated section and a
horizontal part is 1.0 m above the ground level
and the top of the track is 2.4 m above the
ground. Find the distance on the ground with
respect to the point B (which is vertically)
below the end of the track as shown in figure.
Where the sphere lands. During its flight as a projectile does the sphere continue to rotate
about its centre of mass? Explain.

D Watch Video Solution

270. A circular cylinder has an inextensible string wrapped around it as shown in the figure.

What is the linear acceleration of the cylinder
when

- Watch Video Solution

271. Four sphere each of mass 10 kg and of radius 20 cm are placed at the four cornes of a square of side 100 cm . Calculate the moment
of inertia of the system about an axis coinciding with side of the square (given moment of inertia of sphere $=\frac{2}{5} M R^{2}$)

D Watch Video Solution

272. Four sphere each of mass 10 kg and of radius 20 cm are placed at the four cornes of a
square of side 100 cm . Calculate the moment of inertia of the system about an axis coinciding with diagonal of the square. (given moment of inertia of sphere $=\frac{2}{5} M R^{2}$)
273. A horizontal disc rotating about a vertical axis makes 100 revolutions per minute. A small piece of wax of mass 10 g falls vertically on the disc and adheres to it at a distance of 9 cm from the axis. If the number of revolutions per minute is there by reduced to 90 , calculate the moment of inertia of the disc.

- Watch Video Solution

274. Point masses m_{1} and m_{2} are placed at the opposite ends of a rigid rod of length L, and nelgligible mass. The rod is to be set rotating about an axis perpendicular to it.

Find the position on this rod through which the axis should pass in order that the work required to set the rod rotating with angular velocity ω_{0} should be minimum.

D Watch Video Solution

275. Three particles, each of mass ' m ' are situated at the vertices of an equilateral triangle of side 'a'. the only force acting on the particles are their mutual gravitatinoal foces.

It is desired that each particle move on a circle, while maintaining the original mutual separation 'a'. Find the initial velocity that should be given to each particle and also the time period of the circular motion.

D Watch Video Solution

1. Define centre of mass.

D Watch Video Solution

2. Under what conditions the centre of mass of
two bodies lies midway between the two
bodies?

D Watch Video Solution
3. What is the relation between torque and power?

D Watch Video Solution

4. On what factors does the moment of inertia depend?

D Watch Video Solution

5. About which axis of a body is its moment of
inertia the least?

- Watch Video Solution

6. Why M.I. of called rotational inertia?

- Watch Video Solution

7. Can centre of mass of a body coincide with geometrical centre of the body?
8. If the ice on the polar caps of the earth melts, how will it affect the duration of the day? Explain.

- Watch Video Solution

9. Two satellites of equal masses are revolving around at different heights. Will their moment of inertia same or different?
10. How will you distinguish between a hard boiled egg and a raw egg by spinning each on a table top?

- Watch Video Solution

11. Prove that:
$\tau=I \alpha$
(Watch Video Solution
12. Prove that:
$L=I \omega$

D Watch Video Solution
13. State the principle of conservation of angular momentum.

D Watch Video Solution
14. Define centre of mass.

- Watch Video Solution

15. A stone tied to one end of string is moved in a circle. How much work is done by the centripetal force in this circular motion?

- Watch Video Solution

