©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MBD

THERMAL PROPERTIES OF MATTER

Example

1. What is heat?
(Watch Video Solution
2. Whta is temperature?

D Watch Video Solution

3. When a object is heated, what physical changes are observed?

- Watch Video Solution

4. What is the name of temperature measuring device?

- Watch Video Solution

5. What is the principle of a Thermometer?

- Watch Video Solution

6. Can a substance contract on heating?

- Watch Video Solution

7. Are coefficients of thermal expansion constant for a given solid?

D Watch Video Solution

8. If the temperature of a body rises through $1^{\circ} C$, what will be change on kelvin scale?

D Watch Video Solution

9. What is lowest possible temperature?

- Watch Video Solution

10. How many joules are there in 1 calories?
(Watch Video Solution
11. What is the highest value of density of water?

D Watch Video Solution
12. Do water and ice have the same specific heats?

D Watch Video Solution
13. What should be the properties of a thermometric substance?
(Watch Video Solution
14. At what temperature, the density of water is maximum?

D Watch Video Solution
15. What is S.I. unit of specific heat?

D Watch Video Solution

16. What is the value of specific heat of water
in S.I. units?

- Watch Video Solution

17. What is the principle of calorimetery?

- Watch Video Solution

18. The temperature of a gas is incrased by
$12^{\circ} \mathrm{C}$. What is the corresponding change on kelvin scale?

19. Of metal and alloy, which has greater value

 of temperature coefficient?
- Watch Video Solution

20. What is the realtion between α, β and γ ?

D Watch Video Solution

21. What is thermal conductivity of a perfect
heat conductor and perfect heat insulator?
22. Which metal is a good conductor of electricity and heat?

D Watch Video Solution

23. Which is the only way of heat transfer through a solid?

- Watch Video Solution

24. In which method of heat transfer, gravity does not play any role?

D Watch Video Solution

25. There is a hole in a metal disc. What happens to the size of the hole if metal disc is heated?
(D) Watch Video Solution
26. At what temperature will wood and iron appears equally hot or equally cold?

D Watch Video Solution

27. How does the heat energy from the sun reaches earth?

- Watch Video Solution

28. Why thick glass tumbler cracks when boiling liquid is put in it?

D Watch Video Solution
29. Why a gas is cooled when expanded?

D Watch Video Solution

30. Why people in desert wear heavy clothes?
31. Which mode of transfer of heat is quickest?

- Watch Video Solution

32. What is the basic condition for Newton's
law of cooling to be obeyed?

D Watch Video Solution
33. Stainless steel cooking pans are preferred with extra copper bottom. Why?

D Watch Video Solution

34. What is the difference between rate of
cooling and rate of loss of heat?

D Watch Video Solution
35. Why after some time shining metal articles become dull?

- Watch Video Solution

36. The triple points of neon and carbon dioxide are $24.57 k$ and 216.55 K respectivley.

Express these temperatures on the Celsius and Fahrenheit scales.
37. Two absolute scals A and B have triple points of water defined to be 200 A and 350 B .

What is the relation between T_{A} and T_{B} ?

D Watch Video Solution

38. The electrical resistance in ohms of any
specimen of material varies with temperature
according to the approximate law.
$R-R_{0}\left[1+5 \times 10^{-3}\left(T-T_{0}\right)\right]$
The
resistance is 101.6Ω at triple point of water and 165.5 at normal meting point of head
(600.5K). What is the temperature when the resistance is 123.4Ω ?

- Watch Video Solution

39. Answer the following

The triple-point of water is a standard fixed point in modern thermometry, why? What is wrong in taking the melting point of ice and the boiling point of water as standard point 1 as was originally done in the celsius scale?
40. Answer the following

There were two fixed points in the original celsius scale as mentioned above which were assigned the number $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. On the absolute scale, one of the fixed points is the triple point of water which on the kelvin absolute scale is assigned the number 273.16 K. What is the other fixed point on this (kelvin) scale?
41. Answer the following

The absolute temperature (kelvin scale) T is related to the temperature T_{C} on the celsius scale by $T_{C}=T-273.15$. Why do we have 273.15 in this relation and not 273.16 ?

D Watch Video Solution

42. Answer the following

What is the temperature of the triple point of
water on an absolute scalw whose unit
interval size is equal to that of the Fahrenheit scale?

- Watch Video Solution

43. Two ideal gas thermometers A and B use oxygen and hydrogen respectively. The following observation are made. What is the absolute temperature of normal melting point of sulphur as read by thermometers A and B ?:

(- Watch Video Solution

44. Two ideal gas thermometers A and B use
oxygen and hydrogen respectively. The
following observation are made: What do you
think to the reason for slightly different
answers from A to B ? (The thermometers are
not faulty).

- Watch Video Solution

45. Two ideal gas thermometers A and B use
oxygen and hydrogen respectively. The
following observation are made: What further procedure is needed in the experiment to reduce the discrepancy between the two readings?

- Watch Video Solution

46. A steel tape 1 metre long is correctly calibrated for temperature of $27.0^{\circ} \mathrm{C}$. The length of a steel rod measured by this tape is
found to be 63.0 cm on a h ot day when the temperature is $45^{\circ} \mathrm{C}$. What is the actual length of the steel rod on that day? What is
the length of the same steel rod on a day when the temperature is $27.0^{\circ} C$? Coefficient
of linear expansion of steel

$$
=1.20 \times 10^{-5} C^{-1}
$$

D Watch Video Solution

47. A large steel wheel is to be fitted on a shaft of the same material . At $27^{\circ} C$, the outer diameter of the shaft is 8.70 cm and the diameter of the central hole in the wheel is 8.69 cm . The shaft is cooled using 'dry ice'. At what temperature of the shaft does the wheel
slip on the shaft? Assume coefficient of linear
expansion of the steel is to be constant over
the required temperature range $\alpha_{\text {steel }}=1.20 \times 10^{-5} K$.

D Watch Video Solution

48. A hole is drilled in a copper sheet. The
diameter of the hole is 4.24 cm at $27^{\circ} \mathrm{C}$. What
is the change in the diameter of the hole when
the sheet is heated to $227^{\circ} \mathrm{C}$? Coefficient of
linear expansion of copper

$$
=1.70 \times 10^{5} \wedge \circ C^{-1}
$$

Watch Video Solution

49. A brass wire 1.8 m long at $27^{\circ} \mathrm{C}$ is held when taut with little tension between two
rigid supports. If the wire is cooled to a temperature $-39^{\circ} C$, what is the tension developed in the wire, if tis diameter is 2.0 mm? Coefficient of linar expansion of brass
$=2.0 \times 10^{5} \wedge C^{-1}$, Young's modulus of brass $=0.91 \times 10^{11} P a$.
50. A brass rod of length 50 cm and diameter
3.00 mm is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at $250^{\circ} \mathrm{C}$, if the original lengths are at $40.0^{\circ} \mathrm{C}$? Is there a 'thermal stress' developed at the junction? The ends of the rod are free to expand coefficent

$$
\begin{array}{llll}
\text { of linear } & \text { expansion } & \text { of } & \text { brass } \\
=2.0 \times 10^{-5} \wedge \circ C^{-1}, & & \text { steel } \\
\left.=1.2 \times 10^{-5} \wedge \circ C^{-1}\right) . &
\end{array}
$$

51. The coefficient of volume expansion of glycerine is $49 \times 10^{-5} \wedge C^{-1}$. What is the fractional change in its density for $30^{\circ} \mathrm{C}$ rise in temperature?

- Watch Video Solution

52. A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg .

How much is the rise in temperature of the
block in 2.5 minutes, assuming 50% of power
is used up in heating the machine itself or lost
to the surroundings. Specific heat of aluminium $=0.91 \mathrm{Jg}^{-1} \wedge \circ C^{-1}$

D Watch Video Solution

53. A coper block of mass 2.5 kg is heated in a
furnace to a temperature of $500^{\circ} \mathrm{C}$ and then
placed on a large ice block. What is the maximum amount of ice that can melt?
(specific heat of copper $=0.39 \mathrm{Jg}^{-1} \mathrm{C}^{-1}$, heat of fusion of watter $=335 \mathrm{Jg}^{-1}$).
54. In a experiment on the specific heat of a metal, a 0.20 kg block of the metal at $150^{\circ} \mathrm{C}$ is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing 150 cc of water at $27^{\circ} \mathrm{C}$. The final temperature is $40^{\circ} \mathrm{C}$.

Compute the specific heat of the metal. If heat losses to the surroundings are not negligible, is your answer greater or smaller than the actual value for specific heat of the metal?
55. Answer the following questions based on the P-T phase diagram of carbon dioxide:

At what temperature and pressure can the solid, liquid and vapour phases of CO_{2} coexist in equilibrium?

D Watch Video Solution

56. Answer the following questions based on the P-T phase diagram of carbon dioxide:

What is the efect of decrease of pressure on the fusion and boiling point of CO_{2} ?

D Watch Video Solution

57. Answer the following questions based on the P-T phase diagram of carbon dioxide:

What are the critical temperature and pressure for CO 。? What is their significance?

D Watch Video Solution

58. Answer the following questions based on
the P-T phase diagram of CO_{2}
$C O_{2}$ at 1 atm pressure and temperature $60^{\circ} \mathrm{C}$ is compressed isothermally. Does it go through a liquid phase?

D Watch Video Solution

59. Answer the following questions based on the P-T phase diagram of CO_{2}

What happens when CO_{2} at 4 atm pressure is
cooled from room temperature at constnat pressure?

D Watch Video Solution

60. Answer the following questions based on the P-T phase diagram of CO_{2}

Describe qualitatively the changes in a given mass of solid CO_{2} at 10 atm pressure and temperature $-65^{\circ} C$ as it is heated upto room temperature at constant pressure.
61. Answer the following questions based on the P-T phase diagram of CO_{2}
CO_{2} at 1 atm pressure and temperature $60^{\circ} \mathrm{C}$ is compressed isothermally. Does it go through a liquid phase?

D Watch Video Solution

62. A child running a temperature of $101^{\circ} \mathrm{F}$ is given an antipyrin (i.e. a medicine that lowers fever) which causes an increase in the rate of
evaporation of sweat from his body. If the
fever is brought down to $98^{\circ} F$ in 20 min.,

What is the average rate of extra evaporation
caused by the drug ? Assume the evaporation mechanism to be the only way by which heat is
lost. The mass of the child is 30 kg . The specifric heat of human body is approximately the same as that of water, and latent heat of evaporation of water at that temperature is aout $580 \mathrm{calg}{ }^{-1}$.

- Watch Video Solution

63. A thermocole box is a cheap and effieicnet
method for storing small quantity of cooked
food in summer in particular. A cubical box of side 30 cm has a thickness of 5 cm . If 4 kg of ice are put in a box. Estimate the amount of ice remaining after 6 h . The outside temperature $45^{\circ} \mathrm{C}$, and coefficient
$K=0.01 \mathrm{Js}^{-1} m^{-1} k^{-1}$ [Heat of fusion of
water $\left.=335 \times 10^{3} \mathrm{Jkg}^{-1}\right]$.

- Watch Video Solution

64. A brass boiler has a base area of $0.15 m^{2}$
and thickness 1.0 cm . It boils water at the rate of $6.0 \mathrm{~kg} / \mathrm{min}$. When placed on a gas stove.

Estimate the temperature of the part of the flame in contact with boiler. Thermal conductivity of brass

$$
=109 j s^{-1} m^{-1} \wedge \circ C^{-1} .
$$

- Watch Video Solution

65. Explain why:

A body with large reflecting is a poor emitter.

D Watch Video Solution

66. Explain why:

A brass tumbler feels much colder than a wooden tray on a chilly day.

D Watch Video Solution

67. Explain why:

An optical pyrometer (for measuring high temperature) calibrated for an ideal black body radiation gives too low value for the temperature of a red hot iron piece in the open, but gives a correct value for the temperature when the same piece is in the furnace.

D Watch Video Solution

68. Explain why:

The earth without its atmosphere would be in hospitably cold.

D Watch Video Solution

69. Explain why:

Heating systems based on circulation of steam
are more efficient in warming a building than
those based on circulation of hot water.
70. A body cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 5 minuts. Calculate the time it takes to cool from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The temperature of surrounding is $20^{\circ} \mathrm{C}$.

- Watch Video Solution

71. A bimetallic strip is made of aluminium and steel $\left(\alpha_{A}>\alpha_{\text {steel }}\right)$. On heating, the strip will
A. remain straight,
B. get twisted
C. will bend with aluminium on concave side
D. will bend with steel on concave side.

Answer:

D Watch Video Solution
72. A uniform metallic rod rotates about its perpendicular bisector with constant angular
speed. If it is heated uniformly to raise its temperature slightly
A. its speed of rotation increases
B. its speed of rotation decreases
C. its speed of rotation remains same
D. its speed increases because it moment of inertia increases.

Answer:

73. An aluminium sphere is dipped into water. Which of the following is true?
A. Buoyancy will be less in water at $0^{\circ} \mathrm{C}$
than that in water at $4^{\circ} C$.
B. Buoyancy will be more in water at $0^{\circ} \mathrm{C}$
than that in water at $4^{\circ} C$.
C. Buoyancy in water at $0^{\circ} C$ will be same
as that in water at $4^{\circ} \mathrm{C}$.
D. Buoyancy may be more or less in water
at $4^{\circ} C$ depending on the radius of the

sphere.

Answer:

D Watch Video Solution

74. As the temperature is increased, the time period of a pendulum
A. increased as its efective length increases
eventhoguh its centre of mass still remains at the centre of the bob.
B. decreases as its effective length
increases even though its centre of mass
still remains at the centre of the bob
C. increases as its effective length
increases due to shifting of centre of
mass below the centre of the bob.
D. decreases as its effective length remains
same but the centre of mass shifts above the centre of the bob.
75. Heat is associated with
A. kinetic energy of random motion of molecules.
B. kinetic energy of orderly motionof molecules.
C. total kinetic energy of random and orderly motion of molecule

D. kinetic energy of random motion in

some cases and kinetic energy of orderly motion in other.

Answer:

D Watch Video Solution

76. The radius of a metal sphere at room temperature T is R, and the coefficient of linear expansion of the meta is α. The sphere is heated a little by a temperature ΔT so that
its new temperature is $T+\Delta T$. The icnrease
in the volume of the sphere is approximately
A. $2 \pi R \alpha \Delta T$
B. $\pi R^{2} \alpha \Delta T$
C. $4 \pi R^{3} \alpha \Delta T / 3$
D. $4 \pi R^{3} \alpha \Delta T$

Answer:
(Watch Video Solution
77. A sphere, a cube and a thin circular plate, all of same material and same mass are initially heated to same hgih temperature.
A. Plate will cool faxstest and cube the
slowest
B. sphere will cool fastest and cube the slowest.
C. Plate will cool fastest and sphere the
slowest

D. Cube will cool fastest and plate the

slowest

Answer:

D Watch Video Solution

78. Mark the correct options
A. A system X is in the thermal equilibrium
with Y but not with Z. System Y and Z
may be in thermal equilibrium with each
other
B. A system X is in thermal equilibrium with
Y but not with Z. Systems Y and Z are not
in thermal equilibrium with eachother.
C. A system X is neither in thermal
equilibriumn with Y nor with Z. The
system Y and Z must be in thermla
equilibrium with each other
D. A system X is neither in thermal equilibrium with Y nor with Z. The system Y and Z may be in thermal equilibrium with each other.

Answer:

D Watch Video Solution

79. Gulab Jamuns' (assumed to be spherical) are to be heated in an oven. They are available intwo sizes, one twice bigger (in radius) than
the other. Pizzas (assumed to be discs) are also to be heated in oven. They are also in two sizes, one twice bgi (in radius) than the other.

All four are put together to be heated to oven temperature. Choose the correct option from the following
A. Both size gulab jamuns will get heated in the same time
B. Smaller gulab jamuns are heated before
the bigger one
C. Smaller pizzas are hated before bigger ones.
D. Bigger pizzas are heated before smaller one.

Answer:

D Watch Video Solution

80. Refer to the plot of temperature versus
time (shown in the figure) showing the changes in the state of ice on heating (not to
scale).

Which of the following is correct?
A. The region $A B$ represents ice and water
in thermal equilibrium
B. At B water starts boiling
C. At C all the water gets converted into
steam.

D. C to D represents water and steam in

 equilibrium at boiling point.
Answer:

D Watch Video Solution

81. A glass full of hot milk is pured on the table. It begins to cool gradually. Which of the following is incorrect?
A. The rate of cooling is constant till milk
attains the temperature of the
surrounding.
B. The temperature of milk falls off
exponetially with time
C. While cooling, there is a flow of heat
from milk to the surrounding as well as
from surrounding to the milk but the net flow of heat is from milk to the surrounding and that is why it cools.
D. All three phenomenon, conduction,
convectoin and radiation are responsible
for the loss of heat from milk to the
surroundings.

Answer:

D Watch Video Solution
82. Is the bulb of a thermometer made of diathermic or adiabatic wall?
83. A student records the initial length I, change in temperature ΔT and change in length Δl of a rod as follows: If the first observation is correct, what can you say about observations 2,3 and 4 ?

(Watch Video Solution
84. Why does a metal bar appear hotter than a wooden bar at the same temperature?

Equivalently it also appears cooler than wooden bar if they are both colder than room temeperature.

D Watch Video Solution

85. Calculate the temperature which has same numerical value on Celsius and Fahrenheit scale.
86. These days people use steel utensils with
copper bottom. This is supposed to be good for uniform heating of food. Explain this effect using the fact that copper is the better conductor.

D Watch Video Solution

87. Find out the increase in moment of inertia I
of a uniform rod coefficient of linear
expansion α about its perpendicular bisector when its temperature is slightly increased by ΔT.

D Watch Video Solution

88. During summers in India, one of the common practice to keep cool is to make ice balls of crushed ice, dip it in flavored sugars syrup and sip it. For this a stick is inserted into
curshed ice and its squeezed in the palm to make it into the ball. Equivalently in winter, in
those areas where it snows, people make snow balls and throw around. Explain the formation of ball out of crushed ice or snow in light of PT diagram of water.

D Watch Video Solution

89. 100 g of water is supercooled to $-10^{\circ} \mathrm{C}$.

At this point, due to some disturbance mechanised or otherwise some of its suddenly
freeazes to ice What will be the temperature of the resultant mixture and how much mass
would freeze?
$\left(S_{W}=1 \mathrm{cal} / \mathrm{g} /{ }^{\circ} C\right.$ and $\left.L_{W f u s i o n}=80 \mathrm{cal} / \mathrm{g}\right]$.

D Watch Video Solution

90. One day in the morning, Ramesh filled up $\frac{1}{3}$ bucket of hot water from geyser, to take bath. Remaining 2.3 was to be filled by cold water (at room temperature) to bring mixture to a comfortable temperature. Suddenly

Ramesh had to attend to something which
would take some time say 5-10 minutes
before he could take bath. Now the he had two options:
(i) fill the remaining bucket completely by cold water and then attend to the work, (ii) first
attend to the work and fill the remaining bucket just before taking bath. Which option do you think would have kept water warmer ? Explain.

- Watch Video Solution

91. One day in the morning, Ramesh filled up
$\frac{1}{3}$ bucket of hot water from geyser, to take
bath. Remaining 2.3 was to be filled by cold water (at room temperature) to bring mixture
to a comfortable temperature. Suddenly
Ramesh had to attend to something which would take some time say 5-10 minutes
before he could take bath. Now the he had two options:
(i) fill the remaining bucket completely by cold water and then attend to the work, (ii) first attend to the work and fill the remaining
bucket just before taking bath. Which option do you think would have kept water warmer ? Explain.

- Watch Video Solution

92. We would like to prepare a scale whose length does not change with temperature. It is proposed to prepare a unit scale of this type whose length remains, say 10 cm . We can use a
bimetallic strip made of brass and iron each of different length whose length (both
components) would change in such a way that difference between their lengths remains constant. Ifalpa_(iron $=1.2 \times x 10^{\wedge}-5 / / \mathrm{K}$ and alpha_(brass $=1.8 \times x 10^{\wedge}-5 / / K^{\prime}$, what should we take as length of each strip?

D Watch Video Solution

93. We would like to make a vessel whose volume does not change with temperature.
We can use brass and iron
$\left(\beta_{\text {brass }}=6 \times 10^{-5} / k\right.$
and
$\left.\beta_{\text {iron }}=3.55 \times 10^{-5} / k\right)$ to create a volume of 100 cc . How do you think you can achieve this.

D Watch Video Solution

94. Calculate the stress developed inside a tooth cavity filled with copper when hot tea at tempreature of $57^{\circ} \mathrm{C}$ is drunk. You can take bdy (tooth) temperature ot be $37^{\circ} \mathrm{C}$ and $\alpha=1.7 z z 10^{-5} /{ }^{\circ} C$, bulk modulus for copper $=140 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.

Watch Video Solution

95. A thin rod having length L_{0} at $0^{\circ} C$ and coefficient of lineare expansion α has its two ends maintained at temperatures θ_{1} and θ_{2}, respectivley. Find its new length.

- Watch Video Solution

96. According to Stefan's law of radiation, a black body radiates energy σT^{4} from its unit surface area every second where T is the
surface temperature of the black body and
$\sigma=5.67 \times 10^{-8} W / m^{2} K^{4} \quad$ is known as

Stefan's constant. A nuclear weapon may be thought of as a ball of radius 0.5 m . When detonated, it reaches temperature of $10^{6} \mathrm{~K}$ and can be treated as a black body.

Estimate the power it radiates

- Watch Video Solution

97. According to Stefan's law of radiation, a black body radiates energy σT^{4} from its unit
surface area every second where T is the surface temperature of the black body and $\sigma=5.67 \times 10^{-8} W / m^{2} K^{4} \quad$ is known as Stefan's constant. A nuclear weapon may be thought of as a ball of radius 0.5 m . When detonated, it reaches temperature of $10^{6} \mathrm{~K}$ and can be treated as a black body.

Estimate the power it radiates

Watch Video Solution

98. According to Stefan's law of radiation, a
black body radiates energy σT^{4} from its unit
surface area every second where T is the surface temperature of the black body and $\sigma=5.67 \times 10^{-8} W / m^{2} K^{4} \quad$ is known as

Stefan's constant. A nuclear weapon may be thought of as a ball of radius 0.5 m . When detonated, it reaches temperature of $10^{6} \mathrm{~K}$ and can be treated as a black body.

Estimate the power it radiates
99. Which of the following has the highest specific heat?

A. Copper

B. Water
C. Hydrogen
D. Silver

Answer:

D Watch Video Solution
100. Boiling water is changing into steam. The specific heat of boiling water is
A. Zero
B. One
C. Infinity
D. Less than one.

Answer:

D Watch Video Solution

101. One gram of ice at $0^{\circ} C$ is aded to 5 gram

 of water at $10^{\circ} C$. Final temperature of the mixture isA. $-5^{\circ} C$
B. $5^{\circ} C$
C. $0^{\circ} C$
D. None of these

Answer:

D Watch Video Solution
102. An iron ball is heated. The percentage increase will be largest in
A. Diameter
B. Volume
C. Surface area
D. Density

Answer:
(Watch Video Solution
103. Coefficient of cubical expansion of water
A. $0^{\circ} C$
B. $4^{\circ} C$
C. $15.5^{\circ} \mathrm{C}$
D. $100^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution
104.540 g of ice at $0^{\circ} C$ is mixed with 540 g of
water at $80^{\circ} C$. The final tempreature of the
mixture in ${ }^{C}$ will be
A. $40^{\circ} C$
B. 79.9°
C. $0^{\circ} C$
D. $80^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution
105. A body takes 10 minutes to cool from
$60^{\circ} C$ to $50^{\circ} C$. If the temperature of
surrounding s is $25^{\circ} \mathrm{C}$, then temperature of body after next 10 minutes will be
A. $48^{\circ} C$
B. $46^{\circ} C$
C. $49^{\circ} C$
D. $43^{\circ} \mathrm{C}$

Answer:

106. Dimensional formula of specific heat capaicty is
A. $\left[M L^{2} T^{-2} k\right]$
B. $\left[M L^{2} T^{-2} K^{-1}\right]$
C. $\left[M L t^{-2} K^{-1}\right]$
D. $\left[M^{0} L^{2} T^{-2} K^{-1}\right]$

Answer:

107. Boiling point of water

A. increases with the decrease in pressure
B. increases with the increase in pressure
C. decreases with te increase in pressure
D. remains the same with increase in pressure.

Answer:

108. Two spheres are made of same metal had
and have same mass. One is solid and the other is hollow. When heated to the same temperature, percentage increase in diameter will be
A. more for hollow sphere
B. less for hollow sphere
C. same for both
D. cannot say
109. The specific heat of an ideal gas varies
with temperature T as
A. T^{1}
B. T^{2}
C. T^{-1}
D. T^{0}

Answer:
110. In a room containing air, heat, can go from one place to another by
A. Conduction
B. Convection
C. Radiation
D. All these

Answer:

- Watch Video Solution

111. It is hotter at some distance over the fire than in front of it, because:
A. heat is radiated upwards only
B. convection of het occurs downwards only
C. air conducts heat upwards only
D. convection of heat occurs upwards only.
112. The dimensional formula of coefficient of thermal cnductivity is
A. $\left[M^{1} L^{1} T^{-3} K^{-1}\right]$
B. $\left[M^{1} L^{2} T^{2} K^{-1}\right]$
C. $\left[M^{1} L^{1} T^{-3} k^{-4}\right]$
D. $\left[M^{1} L^{0} T^{-2} K^{-1}\right]$

Answer:

113. Steam at $100^{\circ} C$ is moe dangerous than
the same mass of water at $100^{\circ} \mathrm{C}$ because
A. steam contains more internal energy
B. steam moves faster than water
C. steam is less dense than water
D. steam has a higher specific heat capacity
than water.

Answer:

114. Which mode of transfer of heat is quickest?
A. Conduction
B. Convection
C. Radiation
D. (A) and (B)

Answer:

- Watch Video Solution

115. Solids are heated by the mode of
A. Conduction
B. Convection
C. Radiation
D. None of these

Answer:

- Watch Video Solution

116. If m is the mass, θ is temperature and c is
spedific heat, then thermal capacity k is given
by
A. $k=m c \theta$
B. $k=m \theta$
C. $k=m \frac{c}{\theta}$
D. $k=m c$

Answer:

D Watch Video Solution
117. The presence of gravitational field is required for the heat transfer by
A. stiring off liquid
B. Conduction
C. Natural covection

D. Radiation

Answer:

D Watch Video Solution
118. According to Neton's law of cooling, the rate of colling of a body is proportional to $(\Delta \theta)^{n}$, where $\Delta \theta$ is difference of temprature of the body and the surroundings, and n is equal to
A. 1
B. 2
C. 3
D. 4
119. Fill in the blanks:

The instrument used to measure tempreature is called

- Watch Video Solution

120. What is the realtion between α, β and γ ?

121. Fill in the blanks:

expand most on heating.

- Watch Video Solution

122. Fill in the blanks:
have no definie shape but have definite
volume.

- Watch Video Solution

123. Fill in the blanks:

Water has ____density at $4^{\circ} C$

D Watch Video Solution
124. Fill in the blanks:

Unit of latent heat is
(D) Watch Video Solution

125. Fill in the blanks:

When a solid or liquid is heated through a small range of temperature its volume (more or less) constant.

- Watch Video Solution

126. What is the name of temperature measuring device?

D Watch Video Solution
127. Define specific heat.

D Watch Video Solution

128. Can specific heat of a gas be negative?

D Watch Video Solution
129. Define coefficient of linear expansion of a solid.
130. Define absolute zero.

- Watch Video Solution

131. Are coefficients of thermal expansion constant for a given solid?

D Watch Video Solution

132. What is the principle of calorimetery?
133. Is it possible that there is no increase in
the temperature of a body despite being heated?

D Watch Video Solution

134. Do all bodies expand on heating?

- Watch Video Solution

135. What is thermal capacity? Give its SI unit.

- Watch Video Solution

136. What is water equivalent?
(D) Watch Video Solution
137. Define latent heat.

- Watch Video Solution

138. What is the realtion between α, β and γ ?

- Watch Video Solution

139. What is the value of J ?
(Watch Video Solution
140. Which is greater : C_{p} or C_{v} ?

- Watch Video Solution

141. Heat flows from a body at temperature to that at temeprature.

D Watch Video Solution

142. Heat is a form of

D Watch Video Solution
143. The degree of ___ of a body is called its temperature.
144. Thrmal capacity of a body and its water equivalent are ______ equal.

- Watch Video Solution

145. Hat can be transferred rom one place to another by ____ ways.

D Watch Video Solution
146. In the steady state, the rate of flow of heat through any section of a metal bar is

D Watch Video Solution

147. Distinguish between heat and work, and justify the statement that heat and work are interrelated.

D Watch Video Solution

148. Define the following terms:

Critical temperature

D Watch Video Solution
149. Which metal is used in thermometer?

D Watch Video Solution

150. Ditinguish clearly between temperature and heat.

- Watch Video Solution

151. Why a gas has two principal specific heat capacities?

- Watch Video Solution

152. Why a gas has two principal specific heat capacities?

D Watch Video Solution

153. Of what significance is the difference between these two specific heat capacities ratios?

- Watch Video Solution

154. Prove that there is only one triple point.

- Watch Video Solution

155. There are two spheres of same material and same radius at same temperature but one
being solid while the other hollow. Which sphere will expand more if they are heated to the same temperature .

D Watch Video Solution

156. There are two spheres of same material and same radius at same temperature but one being solid while the other hollow. Which
sphere will expand more if they are heated to
the same temperature .

D Watch Video Solution
157. Why do we pack ice in gunny bags?

- Watch Video Solution

158. Why do Eskimos make double walled houses?

D Watch Video Solution
159. On a winter night, you feel warmer when clouds cover the sky than when the sky is clear.

Explain.

D Watch Video Solution
160. Why do we wear woolen clothes in winter?

D Watch Video Solution
161. The lid of a tea pot is provided with a hole, why?

- Watch Video Solution

162. Two rods X and Y are of equal lengths.

Each rod has its ends at temperature T_{1} and
T_{2}. What is the condition that will ensure equal rate of flow of heat through the rods X and Y ?
163. Explain different scales of temperature

(Watch Video Solution

164. What is the effect of temperature on solids? And also define coefficients of linear, superficial and cubical expansion and write relation between them.
165. Explain thermal expansion in terms of vibratory motion of atoms.

- Watch Video Solution

166. Define calorie.

D Watch Video Solution
167. Define Joule's Mechanical equivalent of heat.
168. Define specific heat.

D Watch Video Solution

169. How does specific heat vary with temperature.

D Watch Video Solution
170. Define calorimetry. What is its principle?
171. What do you mean by phases of a substance?

- Watch Video Solution

172. Define equilibrium state.

D Watch Video Solution

173. What is Evaporation ?

D Watch Video Solution

174. Define a black body and explain how it can be realised in practice.

- Watch Video Solution

175. State Stefan Boltzmann law for the black body radiation.

- Watch Video Solution

176. What is the basic condition for Newton's law of cooling to be obeyed?

D Watch Video Solution

177. What space must be left between two rails

60 m long so as to allow for an expansion upto $40^{\circ} \mathrm{C}$ assuming that the rails are laid down at $15^{\circ} C, \alpha=0.000012$?
178. An ironring which is 1 m in diameter is to
be shrunk on a pulley which is 1.005 m in diameter. If the temprature of the ring is $10^{\circ} C$, find the temperature to which it must be raised so as that it will just slip on the circumferences on the pulley, α for iron = $0.00012^{`}$.

D Watch Video Solution
179. A metal plates 5 millimetre thick and 10 centimetre square has a temperature difference of $35^{\circ} \mathrm{C}$ between its urfaces. If 1820 calories of heat are transimitted every second, what is the co-efficient of thermal conductivity of the metal?

- Watch Video Solution

180. The opposite faces of a cubical block of iron and cross-section 4 sq. cm are kept in
contact with steam of melting ice. Calculate the amount of ice melted at the end of 10 minutes if $K=0.2$ calcm ${ }^{-1} s^{-1} C^{-1}$ for iron.

D Watch Video Solution

181. The heat of combustion of ethane gas is

373 K Cal per mole. Assuming that 50% of heat
is lost, how many litres of ethane measured at S.T.P. must be burnt to convert 50 kg of water at $10^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$? One mole of gas
occupies 22.4 litres at S.T.P. Latent heat (L) of steam $=2.25 \times 10^{6} J k^{-1}$.

D Watch Video Solution

182. Calculate the heat of combustion of coal when 10 g of coal on burning raises the temperature of 2 litres of water from $20^{\circ} C \rightarrow 55^{\circ} C$.
183. The coefficient of cubical expansion of mercury is 0.00018 and that of brass 0.00006 per deg C. If a barometer having a brass-scale were to read 74.5 cm at $30^{\circ} \mathrm{C}$, find the true barometric height at $0^{\circ} C$. The scale is supposed to be correct at $15^{\circ} \mathrm{C}$.

D Watch Video Solution

184. A brass wire 1.8 m long at $27^{\circ} C$ is held
when taut with little tension between two
rigid supports. If the wire is cooled to a temperature - $39^{\circ} C$, what is the tension developed in the wire, if tis diameter is 2.0 mm? Coefficient of linar expansion of brass $=2.0 \times 10^{5} \wedge C^{-1}$, Young's modulus of brass $=0.91 \times 10^{11} \mathrm{~Pa}$.

D Watch Video Solution

185. A cylinder of diameter exactly 1 cm at
$30^{\circ} C$ is to be slided into a hole in a steel plate. The hole has a diameter of 0.99970 cm
at $30^{\circ} \mathrm{C}$. To what temperature must the plate
be
heated?
For
steel
$\alpha=1.1 \times 10^{-5} \wedge C^{-1}$

D Watch Video Solution

186. A metal rod A of 25 cm length expands by
0.050 cm when its temprature is raised frmo
$0^{\circ} C$ to $100^{\circ} C$. Another rod B of a different metal of length 40 cm expands by 0.040 cm
for the same rise in temperature. A third rod C of 50 cm length is made up of pieces of rods A
and B placed end to end expands by 0.03 cm on heating from $0^{\circ} C$ to $50^{\circ} C$. Find the lengths of each portion of the composite rod C.

- Watch Video Solution

Exercise

1. What is the value of Rydberg constant?

- Watch Video Solution

2. What is an ideal gas ?

- Watch Video Solution

3. Of metal and alloy, which has greater value of temperature coefficient?

D Watch Video Solution

4. What is SI unit of coefficient fo linear expansion?

- Watch Video Solution

5. Why is J called as conversion factor?

- Watch Video Solution

6. Do water and ice have the same specific heats?
7. Distinguish between heat and temperature.

D Watch Video Solution

8. What is meant by the statement that heat is an energy in transit?

- Watch Video Solution

9. Why are two ends of a long bridge generally
kept on trolley?
10. Define specific heat.

- Watch Video Solution

11. A brass and an iron rod are each of one metre long at $0^{\circ} C$. Find the difference in their lengths at $100^{\circ} \mathrm{C}$. Coefficient of linear expansion of brass is 0.000019 and of iron $=$ 0.000012 .
12. What is meant by coefficient of linear expansion, superficial expansion and cubical expansion? Derive the relation between them.

D Watch Video Solution

13. How is molar specific heat different from

specific heat?

14. Define calorimetry. What is its principle?

- Watch Video Solution

