©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MBD

THERMODYNAMICS

Example

1. State first law of thermodynamics.

- Watch Video Solution

2. What do you mean by "internal energy"?

- Watch Video Solution

3. What is the value of specific heat of water in S.I. units?

- Watch Video Solution

4. Which is greater : C_{p} or C_{v} ?

- Watch Video Solution

5. Does the internal energy of an ideal gas change in an isothermal process
6. Does the internal energy of an ideal gas change in an adiable process?

- Watch Video Solution

7. Can the temperature of an isolated system change?

D Watch Video Solution

8. Why does a gas gets heated on compression?

- Watch Video Solution

9. Why cooling takes place when a gas suffer adiabatic expansion?

- Watch Video Solution

10. Can two isothermal curves intersect each other? Why?

- Watch Video Solution

11. What is heat engine?

- Watch Video Solution

12. What is heat pump?

- Watch Video Solution

13. How is heat engine differ from refrigerator?

- Watch Video Solution

14. Under what conditions can the efficiency of a Carnot engine be 100% ?

- Watch Video Solution

15. Is it possible to convert internal energy into work?
16. Can whole of work be converted into heat? Is the reverse true?

- Watch Video Solution

17. Is rusting of iron a reversible process?

- Watch Video Solution

18. Is Carnot's engine a practical engine?

- Watch Video Solution

19. How is the efficiency of a Carnot engine affected by the nature of the working substance?

- Watch Video Solution

20. Can the temperature of a gas be increased by keeping its pressure and volume constant?

- Watch Video Solution

21. A geyser heats water flowing at the rate of 3.0 litres per minute from $27^{\circ} C$ to $77^{\circ} C$. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is $4.0 \times 10^{4} \mathrm{~J} / \mathrm{g}$?

(Watch Video Solution

22. What amount of heat must be supplied to $2.0 \times 10^{-2} \mathrm{~kg}$ of nitrogen (at room temperature) to raise its temperature by $45^{\circ} \mathrm{C}$ at constant pressure ? (Molecular mass of $N_{2}=28, R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.)

D Watch Video Solution

23. Explain why Two bodies at different temperatures
T_{1} and T_{2} if brought in thermal contact do not necessarily settle to the mean temperature $\left(T_{1}+T_{2}\right) / 2$.

D Watch Video Solution

24. Explain why The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.

D Watch Video Solution

25. Explain why Air pressure in a car tyre increases during driving.

- Watch Video Solution

26. A cylinder with a movable piston contains3moles of hydrogen atstandard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston
is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?

D Watch Video Solution

27. In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium state B, an amount of work equal to 22.3 Jis done on the system. If the gas is taken from state A to B via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case ? (Take 1 $\mathrm{cal}=4.19 \mathrm{~J})$
28. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : What is the final pressure of the gas in A and B ?

- Watch Video Solution

29. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : What is the change in internal energy of the gas ?

- Watch Video Solution

30. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : What is the change in the temperature of the gas ?

- Watch Video Solution

31. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The
entire system is thermally insulated. The stopcock is suddenly opened. Answer the following : Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface?

- Watch Video Solution

32. A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per minute and services $3.6 \times 10^{9} \mathrm{~J}$ of heat per minute from its boiler.

What is the efficiency of the engine? flow much heat is wasted per minute?
33. An electric heater supplies heat to a system at a rate of 100W. If system performs work at a rate of 75 joules per second. At what rate isthe internal energy increasing?

- Watch Video Solution

34. A refrigerator isto maintain eatables kept inside at
$9^{\circ} C$. If room temperature is $36^{\circ} C$, calculate the coefficient of performance.

D Watch Video Solution

35. An ideal gas undergoes four different processes from the same initial state (Figure Four processes are adiabatic,
isothermal, isobaric and isochoric. Out of 1,2,3 and 4, which one is adiabatic?

A. 4
B. 3
C. 2
D. 1

Answer:
36. If an average person jogs, he produces 14.5×10^{3} $\mathrm{cal} / \mathrm{min}$. This is removed by the evaporation of sweat. The amount of sweat evaporated per minute (assuming 1 kg requires 580×10^{3} cal for evaporation) is
A. 0.25 kg
B. 2.25 kg
C. 0.05 kg
D. 0.20 kg

Answer:

37. Consider two containers A and B containing identical gases at the same pressure, volume and temperature. The gas in container A is compressed to half of its original volume isothermally while the gas in container B is compressed to half of its original value adiabatically. The ratio of final pressure of gas in B to that of gas in A is
A. $2^{\gamma-1}$
B. $\left(\frac{1}{2}\right)^{\gamma-1}$
C. $\left(\frac{1}{1-\gamma}\right)^{2}$
D. $\left(\frac{1}{\gamma-1}\right)^{2}$

Answer:

38. Three copper blocks of masses M_{1}, M_{2} and $M_{3} \mathrm{~kg}$ respectively are brought into thermal contact till they reach equilibrium. Before contact, they were at $T_{1}, T_{2}, T_{3}\left(T_{1}>T_{2}>T_{3}\right)$. Assuming there is no heat loss to the surroundings, the equilibrium temperature T is (s is specific heat of copper)
A. $T=\frac{T_{1}+T_{2}+T_{3}}{3}$
B. $T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{M_{1}+M_{2}+M_{3}}$
c. $T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{3\left(M_{1}+M_{2}+M_{3}\right)}$
D.

$$
T=\left(M_{1} s+T_{1}+M_{2} T_{2} s+M_{3} T_{3}\right) \frac{s}{3\left(M_{1}+M_{2}+M_{3}\right)}
$$

Answer:

39. Which of the process described below are irreversible?
A. The increase in temperature of an iron rod by hammering it.
B. A gas in a small contianer at a temprture T_{1} is brought in contact with a big reservoir at a higher temperature T_{2} which increases the temperature of the gas.
C. A quasi-static isothermal expansion of an ideal gas in cylinder fitted with a frictionless piston.
D. an ideal gas is enclosed in a piston cylinder arrangement with adiabatic walls. A weight W is added to the piston, resulting in compression of gas.

Answer:

D Watch Video Solution

40. An ideal gas undergoes isothermal process from some initial state I to final state f. choose the correct alternatives
A. $d U=0$
B. $d Q=0$
C. $d Q=d u$

$$
\text { D. } \mathrm{dQ}=\mathrm{dW}
$$

Answer:

- Watch Video Solution

41. Can a system be heated and its temperature remain constant?

- Watch Video Solution

42. A system goes from P to Q by two different paths in the

P-V diagram as shown in Figure. Heat given to the system in path 1 is 1000 J . The work done by the system along path

1 is more than path 2 by 100 J . What is the heat exchanged by the system in path 2 ?

- Watch Video Solution

43. If the door of a refrigerator is kept open, the room in which the refrigerator is kept

- Watch Video Solution

44. Is it possible to increase the temperature of the gas without adding heat to it? Explain.

- Watch Video Solution

45. Explain why Air pressure in a car tyre increases during driving.

- Watch Video Solution

46. Consier a Carnot's cycle operating between $T_{1}=500 \mathrm{~K}$ and $T_{2}=300 K$ producing 1 kJ of mechanical work per cycle. Find the heat transferred to the engine by the reservoirs.

- Watch Video Solution

47. A person of mass 60 kg wants to lose 5 kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is
burnt on expending 7000 kilo calories, how many times must he go up and down to reduce his weight by 5 kg ?

- Watch Video Solution

48. Consider a cycle tyre being filled with air by a pump. Let
V be the volume of the tyre (fixed) and at each stroke of the pump $\Delta \mathrm{V}(\ll \mathrm{V})$ of air is transferred to the tube adiabatically. What is the work done when the pressure in the tube is increased from P_{1} to P_{2}.

- Watch Video Solution

49. In a refrigerator, one removes heat from a lower temperature and deposits to the surroundings at a higher
temperature. In this process, mechanical work has to be done, which is provided by an electric motor. If the motor is of 1 kW power, and heat is transferred from $-3^{\circ} C \rightarrow 27^{\circ} C$, find the heat taken out of the refrigerator per second assuming its efficiency is 50% of a perfect engine.

- Watch Video Solution

50. If the co-efficient of perormance of a refrigerator is 5
and operates at the room temperature $\left(27^{\circ} C\right)$, find the temperature inside the refrigerator.
51. The initial state of a certain gas is $\left(P_{i}, V_{i}, T_{i}\right)$. It undergoes expansion till its volume becomes V_{f} Consider the following case.
the expansion takes place at constant temperature. Plot the P-V diagram.

- Watch Video Solution

52. The initial state of a certain gas is $\left(P_{i}, V_{i}, T_{i}\right)$. It undergoes expansion till its volume becomes V_{f} Consider the following case.

The expansion takes place at constant pressure. Plot the P-
V diagram.
53. A cycle followed by an engine (made of one mole of an ideal gas in a cylinder with a piston) is shown in the figure.

Find heat exchanged by the engine, with the surroundings
at constant volume of the cycle. (C_v=(3/2) R)

- Watch Video Solution

54. Consider that an ideal gas (n moles) is expanding in a process given by $\mathrm{P}=\mathrm{f}(\mathrm{V})$, which passes through a point
(V_{0}, P_{0}). Show that the gas is absorbing heat at $\left(P_{0}, V_{0}\right)$ if the slope of the curve $P=f(V)$ is larger than the slope of the adiabat passing through $\left(P_{0}, V_{0}\right)$

- Watch Video Solution

55. First law of thermodynamics can be explained on the basis of
A. Boyle's law
B. Maxwell's law
C. Charle's law
D. Law of conservation of energy

Answer:

D Watch Video Solution

56. A given system undergoes a change in which work done by the system equals decrease in its internal energy. The system must have undergone an
A. Isothermal change
B. Adiabatic change
C. Isochroic change
D.

Answer:

- Watch Video Solution

57. Heat capacity of a susbtance is infinite It means
A. Heat is given out
B. Heat is taken in
C. No change in temperature whether heat is taken in or given out
D. All of these

Answer:

- Watch Video Solution

58. Air in a cylinder is suddenly compressed by a piston,
which is then maintained at the same position. With hpassage of time
A. The pressure increases
B. The pressure may increase or decrease
C. The pressure remains the same
D. The pressure decreases.

Answer:

- Watch Video Solution

59. The specific heat of a gas in an isothermal process is
A. Infinite
B. Zero
C. Negative
D. Remains constant.

Answer:

D Watch Video Solution

60. Which of the following is not true about the processes?
A. For isothermal process $d T=0$
B. For isobaric process $D P=0$
C. For isochoric process $D E=0$
D. For adiabatic process $d Q=0$

Answer:

61. Which of the following is not a state function
A. Temperature
B. Entropy
C. Pressure
D. Work

Answer:

- Watch Video Solution

62. Which of the following parameters done not characterize the thermodynamic state of matter?
A. Temperature
B. Pressure
C. Work
D. volume

Answer:

- Watch Video Solution

63. Which of the following is incorrect regarding the first law of thermodynamics?
A. It introduces the concept of the internal energy
B. It introduces the concept of the entropy
C. It is not applicable to any cyclic process
D. It is a restatement of the principle of conservation of energy.

Answer:

- Watch Video Solution

64. "Heat cannot itself flow from a body at lower temperature to a body at higiher temperature" is the statement or consequence of
A. Second law of Thermodynamics
B. Conservation of momentum
C. Conservation of mass
D. First law of thermodynamics.

Answer:

- Watch Video Solution

65. Which one of the following statemetns is true in respect of usual quantities represented by $\Delta Q, \Delta U$ and ΔW
A. ΔU and ΔW are path dependent
B. ΔQ and ΔU are path dependent
C. ΔU does not depend on path
D. ΔQ does not depend upon path.

- Watch Video Solution

66. Which law of the thermodyamics leads us to conclude that it is not possible to convert whole of heat into work continuously
A. Third law
B. Second law
C. First law
D. Zeroth law

Answer:

67. What is the temperature of the source in Carnot cycle of 10% efficiency when heat exhaussts at 270 K
A. 400 K
B. 500 K
C. 300 K
D. 600 K

Answer:

68. For 100% effiiency of Carnot engine, temperature of the sink should be
A. $0^{\circ} C$
B. 0 K
C. 273 K
D. $0^{\circ} F$

Answer:

- Watch Video Solution

69. Four engine are working between

Which one has maximum efficiency?
A. $100 \mathrm{~K}, 80 \mathrm{~K}$
B. $40 \mathrm{~K}, 20 \mathrm{~K}$
C. $60 \mathrm{~K}, 40 \mathrm{~K}$
D. $120 \mathrm{~K}, 100 \mathrm{~K}$.

Answer:

- Watch Video Solution

70. A carnot engine works between 600 K and 300 K . In each cycle of operation, the engine draws 1000 J of heat energy from source. The efficiency of the engine is
A. 0.5
B. 0.7
C. 0.2
D. 0.8

Answer:

- Watch Video Solution

71. A carnot engine works between constant temps. T_{1} and
T_{2} of source and sink resp. For efficiency to be greatest
A. Both T_{1} and T_{2} should be low
B. Both T_{1} and T_{2} should be high
C. T_{1} should be high and T_{2} should be low
D. T_{1} should be high and T_{2} should be high.

- Watch Video Solution

72. In a given process on an ideal gas $\mathrm{dW}=0$ and $\mathrm{dQ}<0$.

Then for the gas
A. The temperature will decrease
B. The volume will increase
C. The pressure will remain constant
D. The temperature will increase

Answer:

73. The efficiency of a Carnot engine working between the steam point and ice pint is
A. 0.288
B. 0.278
C. 0.268
D. 0.238

Answer:

- Watch Video Solution

74. If the door of a refrigerator is kept open, the room in which the refrigerator is kept
A. Decreases
B. Increases
C. Remains constant
D. Cannot say

Answer:

- Watch Video Solution

75. Fill in the Blanks:

A relation between pressure, volume and temperature of a system is called \qquad state.

- Watch Video Solution

76. Fill in the Blanks:

Increase in internal energy is taken as \qquad .

- Watch Video Solution

77. Fill in the Blanks:

Air escaping from a cycle-tube becomes \qquad .

- Watch Video Solution

78. Fill in the Blanks:

If a system is thermally insulated, there is \qquad in internal
energy of the system.
79. Fill in the Blanks:
complete reversible process is \qquad possible.

(D) Watch Video Solution

80. Fill in the Blanks:

Carnot engine is an _______ engine .

D Watch Video Solution

81. Fill in the Blanks:

Complete \qquad of heat into work is possible.
82. Fill in the Blanks:

Ideal engine have \qquad eficiency.

- Watch Video Solution

83. Fill in the Blanks:

Efficiency of Carnot engine depends on \qquad of source and \qquad sink.

D Watch Video Solution

84. Fill in the Blanks:

Efficiency of Carnot engine to independent of
substance.

- Watch Video Solution

85. Give two examples of isothermal changes

- Watch Video Solution

86. Give two examples of adiabatic changes.

- Watch Video Solution

87. Do the internal energy of ideal gas depend upon volume?
88. What is zeroth law of thermodynamics?

- Watch Video Solution

89. State first law of thermodynamics.

- Watch Video Solution

90. How does the internal energy of an ideal gas differ from real gas?

- Watch Video Solution

91. Why is a match stick lighted on rubbing it on the rough surface provided on the side of the match box?

- Watch Video Solution

92. An ideal gas is compressed at a contant temperature.

Will its internal energy increase or decrease?

- Watch Video Solution

93. How is the heat absorbed used by a system in a cyclic process?
94. Write adiabatic gas equation

- Watch Video Solution

95. What thermodynamical variable is defined by Zeroth law

- Watch Video Solution

96. What thermodynamical variable is defined by First law?

- Watch Video Solution

97. If an inflated tyre bursts, the air escaping out is cooled.

Why?

- Watch Video Solution

98. Can the temperature of a gas be increased by keeping its pressure and volume constant?

D Watch Video Solution

99. Explain why it is impossible to design a heat energy with 100% efficiency?

- Watch Video Solution

100. In a Carnot engine, the temperature of sink is increased. What will happen to it efficiency?

- Watch Video Solution

101. An engine working under isothermal conditions can produce no useful work. Explain.

- Watch Video Solution

102. What is Carnot's theorem?

- Watch Video Solution

103. Can a system be heated and its temperature remain constant?

- Watch Video Solution

104. A system goes from P to Q by two different paths in the $\mathrm{P}-\mathrm{V}$ diagram as shown in Figure. Heat given to the system in path 1 is 1000 J . The work done by the system along path 1 is more than path 2 by 100 J . What is the heat exchanged by the system in path 2 ?

- Watch Video Solution

105. If the door of a refrigerator is kept open, the room in which the refrigerator is kept

D Watch Video Solution

106. Is it possible to increase the temperature of the gas without adding heat to it? Explain.

D Watch Video Solution

107. Explain why Air pressure in a car tyre increases during driving.
108. Can specific heat of a gas be infinity?

- Watch Video Solution

109. What is the relation between C_{P} and C_{v} ?

- Watch Video Solution

110. Explain why it is impossible to design a heat energy
with 100% efficiency?
111. Is the internal energy of an ideal gas a function of its pressure?

D Watch Video Solution

112. Is Carnot's cycle a cyclic process?

D Watch Video Solution

113. Two systems are said to be in thermal equilibrium with each other, if they are at the same \qquad .

- Watch Video Solution

114. The work done by a gas is said to be \qquad

- Watch Video Solution

115. Specific heat of a gas can have any value ranging from to ______ depending upon the mode of heating.

D Watch Video Solution

116. First law of thermodynamics indicate the direction of heat transfer.
117. A rerigerator is a \qquad working in reverse direction.

- Watch Video Solution

118. Second law of thermodynamics implie that no heat engine can have \qquad .

D Watch Video Solution

119. Explain why the internal eneryg of a compressed gas is
less than that of a rarefied gas at the same temperature.

- Watch Video Solution

120. Why cooling takes place when a gas suffer adiabatic expansion?

- Watch Video Solution

121. What is zeroth law of thermodynamics?

- Watch Video Solution

122. Explain what do you understand by the term "Internal energy".

- Watch Video Solution

123. State first law of thermodynamics.

- Watch Video Solution

124. From the indicator diagram find an expression for work done in a cyclic process.

- Watch Video Solution

125. What is an isothermal change? Apply first law of thermodynamics to an isothermal change.

Watch Video Solution

126. What do you mean by reversible and irreversible process? Give example.
A. Distinguish between reversible and irreversible process.
B.
C.
D.

Answer:

- Watch Video Solution

127. What is heat engine?
128. State second law of thermodynamics ?

- Watch Video Solution

129. State second law of thermodynamics ?

- Watch Video Solution

130. What are cyclic and non-cyclic processes?

- Watch Video Solution

131. Show that adiabatics are steeper than isotherms.

- Watch Video Solution

132. State first law of thermodynamics. Apply this to derive an expression for the change in internal energy during boiling process.

D Watch Video Solution

133. Is the heat supplied to a system always equal to the increase in its internal energy?
134. How will you justify that first law of thermodynamics is the law of conservation of energy?

- Watch Video Solution

135. What are the limitationhs of first law of thermodynamics?

D Watch Video Solution

136. Give two statements of second law of thermodnamics.

- Watch Video Solution

137. Temperature of the source and sink of a Carnot's engine are increased by the same amount, how will the efficiency be affected?

D Watch Video Solution

138. What is meant by a reversible engine? Explain as to why the efficiency of a reversible engine is maximum.

D Watch Video Solution

139. Two reversible engines are working between same source and sink. Whether the two will be equally efficient or have different eficiencies, discuss.

- Watch Video Solution

140. Is the efficieny of a heat engine more in hilly areas than in theh plains?

- Watch Video Solution

141. Derive the relationship between C_{p} and C_{v}.

- Watch Video Solution

142. Define thermodynamical variables, equation of state
143. Define isothermal process, isochoric (isovolumetric) process, isobaric process and isotherms.

- Watch Video Solution

144. Write adiabatic gas equation

- Watch Video Solution

145. Calculate the external work done when an ideal gas is expanded isothermally
146. Calculate the external work done when an ideal gas is expanded adiabatically.

- Watch Video Solution

147. What is heat engine?

- Watch Video Solution

148. What are the main essentials of Carnot's reversible heat engine? Explain its working and efficiency of the engine.
149. What is a refrigerator? Calculate its coeficient of performance.

- Watch Video Solution

150. Why is defrosting necessary?

- Watch Video Solution

151. Calculate the difference between the two specific heats
of Helium gas per gram. Given that molecular weight of He
$=4, \mathrm{~J}=4.18$ joule/cal and $\mathrm{R}=8.31 \mathrm{Jmo} \leq^{-1} / K^{-1}$?

Watch Video Solution

152. The specific heats of a gas at a constant pressure and at constant volume are 0.20 and $0.15 \mathrm{cal} / \mathrm{g} / \mathrm{K}$ respectively.

Calculate its density at N.T.P.

- Watch Video Solution

153. A gas occupying $d m^{3}$ at 80 cm pressure expands adiabaticlly to $1.190 \mathrm{~cm}^{3}$. If the pressure falls to 60 cm in the process, determine the value of γ.

- Watch Video Solution

1. An ideal gas with pressure P, volume V and temperature

T is expanded isothermally to a volume 2 V and a final pressure P_{i}, If the same gas is expanded adiabatically to a volume 2 V and a final pressure P_{α} find the value of ratio $\frac{P_{\alpha}}{P_{i}}$. The ratio of the specific heats for the gas is 1.67 .

D Watch Video Solution

2. A litre of hydrogen at $27^{\circ} \mathrm{C}$ and $10^{5} \mathrm{Nm}^{-2}$ pressure expand isothermally until its volume is doubled and then adiabatically until its volume is redoubled. Find the final pressure of the gas. $1(\text { gamma }=1.4)^{\prime}$

- Watch Video Solution

3. A volume of gas at atmospheric pressure is compressed adiabatically to half its original volume. Calculate the resulting pressure $(\gamma=1.4)$

- Watch Video Solution

4. The efficiency of an ideal engine is $\frac{1}{8}$. By lowering the temperature of the sink by 100 K , it increases to $\frac{1}{4}$. Find initial and final temperature of sink.

- Watch Video Solution

5. What thermodynamical variable is defined by Zeroth law
6. Is it possible to convert internal energy into work?

D Watch Video Solution

7. An ideal gas is compressed at a contant temperature.

Will its internal energy increase or decrease?

- Watch Video Solution

8. Does the internal energy of an ideal gas change in an isothermal process
9. How is the efficiency of a Carnot engine affected by the nature of the working substance?

D Watch Video Solution

10. If the door of a refrigerator is kept open, the room in which the refrigerator is kept

- Watch Video Solution

11. Why first law of thermodynamics does not forbid flow of heat from lower temperature to higher temperature?
12. What do you mean by "internal energy"?

- Watch Video Solution

13. Fill in the Blanks:

Air escaping from a cycle-tube becomes \qquad .

- Watch Video Solution

14. Can two isothermal curves intersect each other? Why?

- Watch Video Solution

15. What do you mean by reversible and irreversible process? Give example.

- Watch Video Solution

16. Write two characterstics of a reversible process.

- Watch Video Solution

17. State first law of thermodynamics.

- Watch Video Solution

18. Show that $P V^{\gamma}=$ constant for adiabatic process.

Watch Video Solution

