©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(TAMIL ENGLISH)

AREAS

Example

1. $A B C D$ is parallelogram and $A B E F$ is a rectangle and $D G$ is perpendicular on $A B$.

Prove that (i) ar $(A B C D)=\operatorname{ar}(A B E F)$
(ii) ar $(\mathrm{ABCD})=A B \times D G$
2. Triangle $A B C$ and parallelogram ABEF are on the same base, $A B$ as in between the same parallels AB and EF . Prove that $\operatorname{ar}(\triangle A B C)=\frac{1}{2} \operatorname{ar}(\|$ gm ABEF)

- Watch Video Solution

3. Find the area of a figure formed by joining the mid-points of the adjacent sides of a rhombus with diagonals 12 cm . and 16 cm .

- Watch Video Solution

4. Show that the median of a triangle divides it into two triangles of equal areas.

- Watch Video Solution

5. In the figure, $A B C D$ is a quadrilateral. $A C$ is the diagonal and $D E \| A C$ and also DE meets BC produced at E . Show that $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\triangle A B E)$.

- Watch Video Solution

6. In the figure , $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$. Prove that ar $(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$.

- Watch Video Solution

Think Discuss And Write

1. If 1 cm represents 5 m , what would be an area of 6 square cm . represent ?

- Watch Video Solution

2. Rajni says $1 \mathrm{sq} . \mathrm{m}=100^{2}$ sq.cm. Do you agree? Explain.
3. Which of the following figures lie on the same base and between the same parallels?

In such a cases, write the common base and the two parallels.

- Watch Video Solution

Exercise 111

1. In $\triangle A B C, \angle A B C=90^{\circ}, A D=D C, A B=12 \mathrm{~cm}$ and $B C=6.5$ cm . Find the area of $\triangle A D B$.

- Watch Video Solution

2. Find the area of a quadrilateral PQRS in which
$\angle Q P S=\angle S Q R=90^{\circ}, P Q=12 \mathrm{~cm}, P S=9 \mathrm{~cm}, Q R=8 \mathrm{~cm}$ and $S R=$
(Hint: PQRS has two parts)

- Watch Video Solution

3. Find the area of trapezium ABCD as given in the figure in which ADCE is a rectangle. (Hint: ABCD has two parts)

- Watch Video Solution

4. $A B C D$ is a parallelogram. The diagonals $A C$ and $B D$ intersect each other at 'o'. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$. (Hint: Congruent figures have equal area)

- Watch Video Solution

1. The area of parallelogram $A B C D$ is $36 \mathrm{~cm}^{2}$. Calculate the height of parallelogram $A B E F$ if $A B=4.2 \mathrm{~cm}$

- Watch Video Solution

2. $A B C D$ is a parallelogram. $A E$ is perpendicular on $D C$ and $C F$ is perpendicular on $A D$. If $A B=10 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=12 \mathrm{~cm}$. Find $A D$.

- Watch Video Solution

3. If E, F G and H are respectively the midpoints of the sides $A B, B C, C D$ and $A D$ of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$.
4. What type of quadrilateral do you get, if you join $\triangle A P M, \triangle D P O, \triangle O C N$ and $\triangle M N B$ in the example 3.

Watch Video Solution

5. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$ show that $\operatorname{ar}(\triangle A P B)=\operatorname{ar} \Delta(B Q C)$

- Watch Video Solution

6. P is a point in the interior of a parallelogram ABCD. Show that
(i) $\operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)=\frac{1}{2} \operatorname{ar}(A B C D)$
(ii) $\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle P B C)=\operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)$
(Hint : Throught , P draw a line parallel to $A B$)
7. Prove that the area of a trapezium is half the sum of the parallel sides multiplied by the distance between them.

- Watch Video Solution

8. $P Q R S$ and $A B R S$ are parallelograms and X is any point on the side $B R$.

Show that
(i) $\operatorname{ar}($ PQRS $)=\operatorname{ar}($ ABRS $)$
(ii) $\operatorname{ar}(\triangle A X S)=\frac{1}{2} \operatorname{ar}(P Q R S)$

- Watch Video Solution

9. A farmer has a field in the form of a parallelogram PQRS as shown in the figure. He took the mid- point A on RS and joined it to points P and Q. In how many parts of field is divided? What are the shapes of these parts ?

The farmer wants to sow groundnuts which are equal to the sum of

- Watch Video Solution

10. Prove that the area of a rhombus is equal to half of the product of the diagonals.

- Watch Video Solution

Exercise 113

1. In a triangle $A B C$ (see figure), E is the midpoint of median AD , show that
(i) ar $\triangle A B E=\operatorname{ar} \triangle A C E$
(ii) $\operatorname{ar} \triangle A B E=\frac{1}{4} \operatorname{ar}(\triangle A B C)$
2. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

- Watch Video Solution

3. In the figure, $\triangle A B C$ and $\triangle A B D$ are two triangles on the same base $A B$. If line segment $C D$ is bisected by $\overline{A B}$ at O , show that ar $(\triangle A B C)=\operatorname{ar}(\Delta A B D)$.

- Watch Video Solution

4. In the figure D, E are points on the sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(\triangle D B C)=\operatorname{ar}(\triangle E B C)$. Prove that $\mathrm{DE} \| \mathrm{BC}$.
5. In the figure, $X Y$ is a line parallel to $B C$ is drawn through A. If $B E \| C A$ and CF $\|$ BA are drawn to meet $X Y$ at E and F respectively. Show that $\operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle A C F)$.

- Watch Video Solution

6. In the figure, diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B$ || DC intersect each other at O. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\Delta B O C)$.

- Watch Video Solution

7. In the figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets DC produced at F. Show that
(i) $\operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F)$
(ii) $\operatorname{ar}(A E D F)=\operatorname{ar}(A B C D E)$

(D) Watch Video Solution

8. In the figure, if ar
$\Delta R A S=a r \Delta R B S$ and $[\operatorname{ar}(\Delta Q R B)=\operatorname{ar}(\Delta P A S)$ then show that both the quadrilaterals PQSR and RSBA are trapeziums.

- Watch Video Solution

9. A villager Ramayya has a plot of land in the shape of a quadrilateral.

The grampanchayat of the village decided to take over some portion of his plot from one of the corners to construct a school. Ramayya agrees to the above proposal with the condition that he should be given equal amount of land in exchange of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented. (Draw a rough sketch of plot).
\square

