© 'doubtnut India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

BEHAVIOUR OF PERFECT GAS AND KINETIC THEORY

Example

1. Two satellites of earth, S_{1} and S_{2} aremoving inthe same orbit.The mass of S_{1} is four times the mass of S_{2}. Which oneofthe following statements s true?
A. The kinetic energies of the two satellites are equal
B. The time period of S_{1} is four times that of S_{2}.
C. The potential energies of earth satellites in the two cases are equal.
D. S_{1} and S_{2} are moving with the same speed.

Answer:

- Watch Video Solution

2. An Engine has an efficiency of $1 / 6$. When the temperature of sink is reduced $62^{\circ} C$, its efficiency is doubled. Temperature of source, is:
A. $99^{\circ} C$
B. $124^{\circ} C$
C. $37^{\circ} C$
D. $62^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

3. The total energy of electron in the ground state of hydrogen atom is $(-13.6 \mathrm{eV})$. The kinetic energy of an electron in the first excited state is
A. 1.7 ev
B. 3.4 eV
C. 6.8 eV
D. 13.6 eV

Answer:

- Watch Video Solution

4. A particle of mass m, charge Q and kinetic energy T enters a transverse uniform magnetic, field of induction \vec{B}. After 3 seconds the kinetic energy of the particle will be:
A. T
B. 4 T
C. 3 T
D. 2 T

Answer:

D Watch Video Solution

5. At $10^{\circ} \mathrm{C}$ the value of the density of a fixed mass of an ideal gas divided by its pressure is x. At $110^{\circ} \mathrm{C}$ this ratio is:
A. x
B. $\frac{383}{283} x$
C. $\frac{10}{110} x$
D. $\frac{283}{383} x$

Answer:

- Watch Video Solution

6. The rate of increase of thermo e.m.f with temperature at the neutral temperature of a thermocouple:
A. Is negative
B. Is positive
C. Is zero
D. Depends upon the choice of the two materials of the thermocouple

Answer:

- Watch Video Solution

7. Out of the following functions representimg motion of a particle which
$\left.\left.y=\sin \omega t-\cos \omega t, 2) \cdot y=\sin ^{3} \omega t, 3\right) \cdot y=5 \frac{\cos (3 \pi)}{4}-3 \omega^{2} t, 4\right) \cdot y=1$
A. Only(1) and(2)
B. Only (1)
C. Only (4) does not represent SHM
D. Only (1) and (3)

Answer:

- Watch Video Solution

8. Fusion reaction takes place at high temp \qquad .
A. Molecules break up at high temperature
B. Nuclei break up at highn temperature
C. Atoms get ionised at high temperature
D. Kinetic energy is high enough to overcome the coulomb repulsion between nuclei

Answer:

- Watch Video Solution

9. One mole of an ideal gas goes from an initial state A to final state B viva two processes: It first undergoes isothermal expansion from Volume

V to 3 V and then its volume is reduced from 3 V to V at constant pressure.
The correct P-V diagram representing the two processes is:
A.

B.

C.

D.

Answer:

- Watch Video Solution

10. The molar specific heats of an ideal gas at a constant pressure \& volume are denoted by
$C_{P} \& C_{v}$ if $r=\frac{C_{p}}{C_{v}} \& \mathrm{R}$ the universal gases constant then C_{v} is equal
A. $1+\frac{\gamma}{1}-\gamma$
B. $\frac{R}{\gamma-1}$
C. $\frac{\gamma-1}{R}$
D. γR

Answer:

- Watch Video Solution

11. A gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$, as shown. What is the network done by the gas?

A. 2000J
B. 1000J
C. Zero
D. $-2000 J$

Answer:

- Watch Video Solution

12. In the given ($\mathrm{V}-\mathrm{T}$) diagram, what is the relation between $P_{1} \operatorname{and} P_{2}$?

A. $P_{2}=P_{1}$
B. $P_{2}>P_{1}$
C. $P_{2}<P_{1}$
D. Cannot be predicted

Answer:

- Watch Video Solution

13. Two carnot engines A and B are operated in series. The engine A receives heat from the source at temperature T_{1} and rejects the heat to the sink at temperature T.The second engine B receives the heat at temperature T and rejects to its sink at temperature T_{2}. For what value of T the efficiences of the two engines are equal?
A. $\frac{T_{1}+T_{2}}{2}$
B. $\frac{T_{1}-T_{2}}{2}$
C. $T_{1} T_{2}$
D. $\sqrt{T_{1} T_{2}}$

Answer:

14. The mean free path of molecules of a gas ,(radius rO is inverselty propotional to:
A. r^{3}
B. r^{2}
C. r
D. \sqrt{r}

Answer:

- Watch Video Solution

15. A carnot engine, having efficiency of $\eta=\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J , then find the amount of energy absorbed from the reservoir at lower temperature.
A. 99 J
B. 90 J
C. 1 J
D. 100 J

Answer:

- Watch Video Solution

16. A mass m moves in a circle on a smooth horizontal plane with velocity v_{0} at radius R_{0}. The mass is attached to a string which passes through a smooth hole in the plane as shown.The tension in the string is increased gradually and finally m moves in a circle of radius $\frac{R_{0}}{2}$. The final value of
the kinetic energy is :

A. $\frac{1}{4} m v_{0}^{2}$
B. $2 m v_{0}^{2}$
C. $\frac{1}{2} m v_{0}^{2}$
D. $m v_{0}^{2}$

Answer:
17. A block of mass 10kg moving in x direction with a constant speed of $10 \mathrm{~ms}^{-1}$, is subjected to a retarding force $F=0.1 x \mathrm{~J} / \mathrm{m}$ during its travel from $x=20 \mathrm{~m}$ to 30 m . Its final KE will be:
A. 450 J
B. 275 J
C. 250J
D. 475J

Answer:

- Watch Video Solution

18. 4.0 g of gas occupies 22.4 litres at NTP. The specific heat capacityof the gas at constant volume is $5.0 j k^{-1} \mathrm{~mol}^{-1}$ if the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is: (Take gas constant $R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$).
A. $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. 8.0 JK ${ }^{-1} \mathrm{~mol}^{-1}$
C. $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer:

- Watch Video Solution

19. A series R-C circuit is connected to an alternating voltage source .

Consider two situations: When capacitor is air filled, When capacitor is mica filled. Current through resistor is i and voltage across capacitor is V then:
A. $V_{a}-V_{b}$
B. $V_{a}<V_{b}$
C. $V_{a}>V_{b}$
D. $i_{a}>i_{b}$

Answer:

- Watch Video Solution

20. A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to $8 \times 10^{-4} J$ by the end of the second revolution after the beginning of the motion?
A. $0.2 m / s^{2}$
B. $0.1 m / s^{2}$
C. $0.15 m / s^{2}$
D. $0.18 m / s^{2}$

Answer:

21. The molecules of a given mass of a gas have rms velocity of $200 \mathrm{~ms}^{-1}$ at $27^{\circ} \mathrm{C}$ and $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ perssure. What the temperature and perssure of the gas are respectively.
$127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{Nm}^{-2}$
Find the rms velocity of its molecules in $m s^{-1}$
A. $100 / 3$
B. $100 \sqrt{2}$
C. $\frac{400}{\sqrt{3}}$
D. $\frac{100 \sqrt{2}}{3}$

Answer:

- Watch Video Solution

22. A solid sphere of mass m and radius R is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its
geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation $\left(E_{\text {sphere }} / E_{c y l \in d e r}\right)$ will be :
A. 1:4
B. 3:1
C. 2:3
D. 1:5

Answer:

- Watch Video Solution

23. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T . The mass of each molecule of the gas is m .

Which of the following gives the density of the gas?
A. $P /(k T V)$
B. $m k T$
C. $P /(k T)$
D. $P m /(k T)$

Answer:

- Watch Video Solution

24. A gas mixture consists of 2 moles of O_{2} and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is :
A. 15RT
B. 9RT
C. 11RT
D. 4RT

Answer:

- Watch Video Solution

