

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

KINEMATICS

1. A and B are two vectors and θ is the angle between them, if $\left| \overrightarrow{A} \times \overrightarrow{B} \right| = \sqrt{3} \left(\overrightarrow{A} \cdot \overrightarrow{B} \right)$ the value of θ is :

A. 90°

B. 60°

C. 45°

D. 30°

Answer:

Watch Video Solution

2. A particle moving along x-axis has accelaration f, at time t , given by

 $f = f_0 \left(1 - \frac{t}{T} \right)$ where f_0 and T are constants. The particle at t=0 has zero velocity . In the time interval between t=0 and the instant when f=0, the particle's velocity (ν_x) is:

A.
$$rac{1}{2}f_0T$$

$$\mathsf{B.}\,f_0t$$

$$\mathsf{C}.\,\frac{1}{2}f_0T^2$$

D.
$$f_0T^0$$

3. The position x of a particle with respect to time t along x is in given by $x = 9t^2 - t^3$ where x is in meters and t in second. What will be the position of this particle when it achieves maximum speed along the +xdirections?

A. 24 m

- B. 32 m
- C. 54 m

4. The distance travelled by a particle starting from rest and moving with an acceleration $\frac{4}{3}ms^{-2}$ in the third second is:

A. 6 m

B. 4m

C.
$$\frac{10}{3}m$$

D. $\frac{19}{3}m$

5. A thin circular ring of mass M and radius R is rotating in a horizontal plane about an axis vertical to its plane with a constant angular velocity ω . If two objects each of mass m be attached gently to the opposite ends of a diameter of the ring, the ring will then rotate with an angular velocity:

A.
$$\displaystyle rac{\omega M}{M+2m}$$

B. $\displaystyle rac{\omega (M+2m)}{M}$
C. $\displaystyle rac{\omega M}{M+m}$
D. $\displaystyle rac{\omega (M-2m)}{M+2m}$

6. A rectangular, a square, a circular and an elliptica loop, all in the (x -y) plane, are moving out of a uniform magnetic field with a

constant velocity, $\overrightarrow{V} = v\hat{i}$ The magnetic field is directed along the negative z axis direction. The induced emf. during the passage of these loops, out of the field region, will not reman constant for:

- A. the circular and the elliptical loops
- B. only the elliptical loop
- C. any of the four loops
- D. the rectangular, circular and elliptical loops

B.
$$\overrightarrow{d}$$
 + \overrightarrow{c} = \overrightarrow{f}
C. \overrightarrow{d} + \overrightarrow{e} = \overrightarrow{f}
D. \overrightarrow{b} + \overrightarrow{e} = \overrightarrow{f}

8. The dimensions of $(\mu_0 arepsilon_0)^{-rac{1}{2}}$ are :

A.
$$\left[L^{-rac{1}{2}}T^{rac{1}{2}}
ight]$$
B. $\left[L^{rac{1}{2}}T^{rac{1}{2}}
ight]$

C.
$$\begin{bmatrix} L^{-1}T \end{bmatrix}$$

D. $\begin{bmatrix} LT^{-1} \end{bmatrix}$

9. The instantaneous angular position of a point on a rotating wheel is given by the equation $\theta(t) = 2t^3 - 6t^2$. The torque on the wheel becomes zero at:

A. t=2s

B. t=1s

C. t=0.2s

D. t=0.25s

Answer:

10. Two spheres A and B of masses m_1 and m_2 respectively collide . A is at rest initially and B is moving with v velocity along x-axis . After

collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction . The mass A moves after collision in the direction.

A. opposite to that of B

B. $heta=rac{ an^{-1}1}{2}$ to x-axis

C. `theta = tan^(-1) to x-axis

D. same as that of B

Answer:

Watch Video Solution

11. The velocity of a projectile at the initial point A is $\left(2\hat{i}+3\hat{j}
ight)m/s$. Its velocity $(\ \in m/s)$ at point B :

A.
$$-2\hat{i}-3\hat{j}$$

- $\mathsf{B.}-2\hat{i}+3\hat{j}$
- $\mathsf{C.}\,2\hat{i}-3\hat{j}$

D. $2\hat{i}+3\hat{j}$

12. A stone falls freely under gravity . It covers distances h_1 h_2 and h_3 in the first 5 seconds , the next 5 seconds and the next 5 seconds respectively . The relation between h_1 , h_2 and h_3 is:

A.
$$h_1=2h_2=3h_3$$

B. $h_1=rac{h_2}{3}=rac{h_2}{5}$

 ${\sf C}.\,h_2=3h_1\,\,{
m and}\,\,h_3=3h_2$

D.
$$h_1=h_2=h_3$$

Answer:

13. A small object of uniform density rolls up a curved surface with an initial velocity v .It reaches up to a maximum height of $\frac{3v^2}{4}g$ with respect to the initial position . The object is :

A. Ring

- B. Solid sphere
- C. Hollow sphere
- D. Disc

Answer:

Watch Video Solution

14. Vectors
$$\overrightarrow{A}$$
, \overrightarrow{B} and \overrightarrow{C} are such that \overrightarrow{A} . $\overrightarrow{B} = 0$ and \overrightarrow{A} . $\overrightarrow{C} = 0$. Then the vectors parallel to \overrightarrow{A}

15. The displacement 'x' (in meter)of a particle of mass 'm' (in kg) moving in one dimension under the action of a force, is related to time 't' (in sec) by $t=\sqrt{x}+3$. The displacement of

the particle when its velocity is zero will be:

A. 2m

B.4 m

C. Om(zero)

D. 6 m

16. A particle is moving such that its position coordinates (x,y) are (2m,3m) at time t=0 , (6m,7m) at time t=2s Average velocity vectors $(V_a v)$ from t=0 to t=5 s is :

A.
$$rac{1}{5} \Big[13 \hat{i} + 14 \hat{j} \Big]$$

B. $rac{7}{3} \Big[\hat{i} + \hat{j} \Big]$
C. $2 \Big[\hat{i} + \hat{j} \Big]$
D. $rac{11}{5} \Big[\hat{i} + \hat{j} \Big]$

17. A balloon with mass m is descending down with an acceleration a (where a < g).How much mass should be removed from it so that it starts moving up with an acceleration a?

A.
$$\frac{2ma}{g+a}$$

B. $\frac{2ma}{g-a}$
C. $\frac{ma}{g+a}$
D. $\frac{ma}{g-a}$

18. Point masses m_1 and m_2 are placed at the opposite ends of a rigid rod of length L, and negligible mass . The position of point p on this rod through which the axis should p on this rod through which the axis should pass so that the work required to set the rod rotating with angular velocity ω_0 is minimum , is given

by:

A.
$$x=m_2rac{L}{m_1+m_2}$$

B. $x=m_1rac{L}{m_1+m_2}$
C. `x=(m_1)/(m_2)L
D. $x=rac{m_2}{L}$

$$m_1$$

19. What is the minimum velocity with a body of mass m must enter a vertical loop of radius R so that it can complete the loop ?

A. $\sqrt{5gR}$ B. \sqrt{gR} C. $\sqrt{2gR}$ D. $\sqrt{3gR}$

20. If the magnitude of sum of two vectors is equal to the magnitude of difference to two vectors, the angle between these vector is :

A. $180^{\,\circ}$

 $B.0^{\circ}$

C. 90°

D. $45^{\,\circ}$

21. Two cars P and Q starts from a point at the same time in a straight line and their positions are represented by $X_p(t)=at+bt^2$ and $X_0(t)=ft-t^2$.At

when time do the cars have the same velocity?

A.
$$\displaystyle rac{a+f}{2(1+b)}$$

B. $\displaystyle rac{f-a}{2(1+b)}$
C. $\displaystyle rac{a+f}{2(b-1)}$

D.
$$\frac{a-f}{1+b}$$

Watch Video Solution

22. Preeti reached the metro station and found that the escalator was not working . She walked up the stationary escalator in time t_1 . On other days , if she remains stationary on the moving escalator takes her up in time t_2 . The time taken by her to walk up on the

moving escalator will be:

A.
$$\displaystyle rac{t_1t_2}{t_2-t_1}$$

B. $\displaystyle rac{t_1t_2}{t_2+t1}$
C. t_1-t_2
D. $\displaystyle rac{t_1+t_2}{2}$

Answer:

Watch Video Solution

23. The x and y coordination of the particle at any time are $x = 5t - 2t^2$ and y =10 t respectively, where x and y are in metres and t in seconds . The acceleration of the particle at t=2s is:

A.
$$5m/s^2$$

$$\mathsf{B.}-4m\,/\,s^2$$

$$\mathsf{C.}-8m/s^2$$

D. 0

