©゙" doubtnut

PHYSICS

BOOKS - SARAS PUBLICATION

KINEMATICS

Example

1. A and B are two vectors and θ is the angle
between them, if $|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B})$
the value of θ is :
A. 90°
B. 60°
C. 45°
D. 30°

Answer:

- Watch Video Solution

2. A particle moving along x-axis has accelaration f, at time t, given by
$f=f_{0}\left(1-\frac{t}{T}\right)$ where f_{0} and T are
constants . The particle at $\mathrm{t}=\mathrm{O}$ has zero velocity
. In the time interval between $\mathrm{t}=\mathrm{O}$ and the instant when $\mathrm{f}=0$, the particle's velocity $\left(\nu_{x}\right)$ is:
A. $\frac{1}{2} f_{0} T$
B. $f_{0} t$
C. $\frac{1}{2} f_{0} T^{2}$
D. $f_{0} T^{0}$

Answer:

3. The position x of a particle with respect to
time t along x is in given by $x=9 t^{2}-t^{3}$
where x is in meters and t in second. What will
be the position of this particle when it achieves maximum speed along the $+x$ directions?
A. 24 m
B. 32 m
C. 54 m
D. 81 m

Answer:

D Watch Video Solution

4. The distance travelled by a particle starting
from rest and moving with an acceleration
$\frac{4}{3} m s^{-2}$ in the third second is:
A. 6 m
B. 4 m
C. $\frac{10}{3} m$
D. $\frac{19}{3} m$

Answer:

D Watch Video Solution

5. A thin circular ring of mass M and radius R is
rotating in a horizontal plane about an axis
vertical to its plane with a constant angular velocity ω. If two objects each of mass m be attached gently to the opposite ends of a diameter of the ring, the ring will then rotate with an angular velocity:
A. $\frac{\omega M}{M+2 m}$
B. $\frac{\omega(M+2 m)}{M}$
C. $\frac{\omega M}{M+m}$
D. $\frac{\omega(M-2 m)}{M+2 m}$

Answer:

D Watch Video Solution

6. A rectangular, a square, a circular and an elliptica loop, all in the ($x-y$) plane, are moving out of a uniform magnetic field with a
constant velocity, $\vec{V}=v \hat{i}$ The magnetic field
is directed along the negative z axis direction.

The induced emf. during the passage of these loops, out of the field region, will not reman constant for:
A. the circular and the elliptical loops
B. only the elliptical loop
C. any of the four loops
D. the rectangular, circular and elliptical

Answer:

D Watch Video Solution

7. Six vectors, a through f have the magnitude

 and directions indicated in the figure.
$\uparrow_{\bar{a}}$

${ }_{2}^{2}$
A. $\vec{b}+\vec{c}=\vec{f}$
B. $\vec{d}+\vec{c}=\vec{f}$
C. $\vec{d}+\vec{e}=\vec{f}$
D. $\vec{b}+\vec{e}=\vec{f}$

Answer:

D Watch Video Solution

8. The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-\frac{1}{2}}$ are :
A. $\left[L^{-\frac{1}{2}} T^{\frac{1}{2}}\right]$
B. $\left[L^{\frac{1}{2}} T^{\frac{1}{2}}\right]$
C. $\left[L^{-1} T\right]$
D. $\left[L T^{-1}\right]$

Answer:

D Watch Video Solution

9. The instantaneous angular position of a point on a rotating wheel is given by the equation $\theta(t)=2 t^{3}-6 t^{2}$. The torque on the wheel becomes zero at:
A. $t=2 s$
B. $t=1 \mathrm{~s}$
C. $\mathrm{t}=0.2 \mathrm{~s}$
D. $t=0.25 \mathrm{~s}$

Answer:

D Watch Video Solution

10. Two spheres A and B of masses m_{1} and m_{2} respectively collide. A is at rest initially and B
is moving with v velocity along x-axis . After
collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction. The mass A moves after collision in the direction.
A. opposite to that of B
B. $\theta=\frac{\tan ^{-1} 1}{2}$ to x-axis
C. 'theta $=\tan ^{\wedge}(-1)$ to x-axis
D. same as that of B

Answer:

D Watch Video Solution
11. The velocity of a projectile at the initial point A is $(2 \hat{i}+3 \hat{j}) m / s$. Its velocity $(\in m / s)$ at point B :

A. $-2 \hat{i}-3 \hat{j}$
B. $-2 \hat{i}+3 \hat{j}$
C. $2 \hat{i}-3 \hat{j}$
D. $2 \hat{i}+3 \hat{j}$

Answer:

D Watch Video Solution

12. A stone falls freely under gravity. It covers
distances $h_{1} h_{2}$ and h_{3} in the first 5 seconds,
the next 5 seconds and the next 5 seconds respectively. The relation between h_{1}, h_{2} and h_{3} is:

$$
\begin{aligned}
& \text { A. } h_{1}=2 h_{2}=3 h_{3} \\
& \text { B. } h_{1}=\frac{h_{2}}{3}=\frac{h_{2}}{5}
\end{aligned}
$$

$$
\text { C. } h_{2}=3 h_{1} \text { and } h_{3}=3 h_{2}
$$

$$
\text { D. } h_{1}=h_{2}=h_{3}
$$

Answer:

- Watch Video Solution

13. A small object of uniform density rolls up a
curved surface with an initial velocity v .lt reaches up to a maximum height of $\frac{3 v^{2}}{4} g$ with respect to the initial position. The object is :
A. Ring
B. Solid sphere
C. Hollow sphere
D. Disc

Answer:

D Watch Video Solution

14. Vectors \vec{A}, \vec{B} and \vec{C} are such that $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$. Then the vectors
parallel to \vec{A}
A. \vec{B} and \vec{C}
B. $\vec{A} \times \vec{B}$
с. $\vec{B}+\vec{C}$
D. $\vec{B} \times \vec{C}$

Answer:

D Watch Video Solution

15. The displacement ' x ' (in meter)of a particle of mass 'm' (in kg) moving in one dimension under the action of a force, is related to time
't' (in sec) by $t=\sqrt{x}+3$. The displacement of the particle when its velocity is zero will be:
A. 2 m
B. 4 m
C. Om(zero)
D. 6 m

Answer:
(Watch Video Solution
16. A particle is moving such that its position coordinates (x, y) are $(2 m, 3 m)$ at time $t=0$,
($6 \mathrm{~m}, 7 \mathrm{~m}$) at time $\mathrm{t}=2 \mathrm{~s}$ Average velocity vectors
$\left(V_{a} v\right)$ from $\mathrm{t}=0$ to $\mathrm{t}=5 \mathrm{~s}$ is :

$$
\begin{aligned}
& \text { A. } \frac{1}{5}[13 \hat{i}+14 \hat{j}] \\
& \text { B. } \frac{7}{3}[\hat{i}+\hat{j}] \\
& \text { C. } 2[\hat{i}+\hat{j}] \\
& \text { D. } \frac{11}{5}[\hat{i}+\hat{j}]
\end{aligned}
$$

Answer:

17. A balloon with mass m is descending down
with an acceleration a (where $\mathrm{a}<\mathrm{g}$).How
much mass should be removed from it so that
it starts moving up with an acceleration a?

$$
\begin{aligned}
& \text { A. } \frac{2 m a}{g+a} \\
& \text { B. } \frac{2 m a}{g-a} \\
& \text { C. } \frac{m a}{g+a} \\
& \text { D. } \frac{m a}{g-a}
\end{aligned}
$$

Answer:

D Watch Video Solution

18. Point masses m_{1} and m_{2} are placed at the opposite ends of a rigid rod of length L, and negligible mass. The position of point p on this rod through which the axis should p on this rod through which the axis should pass so that the work required to set the rod rotating with angular velocity ω_{0} is minimum , is given
by:

$$
\begin{aligned}
& \text { A. } x=m_{2} \frac{L}{m_{1}+m_{2}} \\
& \text { B. } x=m_{1} \frac{L}{m_{1}+m_{2}} \\
& \text { C. } \begin{array}{l}
\mathrm{x}=\left(m_{-} 1\right) /\left(m_{-} 2\right) \mathrm{L} \\
\text { D. } x=\frac{m_{2}}{m_{1}} L
\end{array} \text { }
\end{aligned}
$$

19. What is the minimum velocity with a body of mass m must enter a vertical loop of radius

R so that it can complete the loop?
A. $\sqrt{5 g R}$
B. $\sqrt{g R}$
C. $\sqrt{2 g R}$
D. $\sqrt{3 g R}$
20. If the magnitude of sum of two vectors is equal to the magnitude of difference to two vectors, the angle between these vector is :
A. 180°
B. 0°
C. 90°
D. 45°
21. Two cars P and Q starts from a point at the same time in a straight line and their $\begin{array}{lll}\text { positions are represented by } \\ X_{p}(t)=a t+b t^{2} & \text { and } & X_{0}(t)=f t-t^{2} . \text { At }\end{array}$ when time do the cars have the same velocity?
A. $\frac{a+f}{2(1+b)}$
B. $\frac{f-a}{2(1+b)}$
C. $\frac{a+f}{2(b-1)}$

D. $\frac{a-f}{1+b}$

Answer:

D Watch Video Solution

22. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_{1}.

On other days, if she remains stationary on the moving escalator takes her up in time t_{2}.

The time taken by her to walk up on the moving escalator will be:

$$
\begin{aligned}
& \text { A. } \frac{t_{1} t_{2}}{t_{2}-t_{1}} \\
& \text { B. } \frac{t_{1} t_{2}}{t_{2}+t 1} \\
& \text { C. } t_{1}-t_{2} \\
& \text { D. } \frac{t_{1}+t_{2}}{2}
\end{aligned}
$$

Answer:
(Watch Video Solution
23. The x and y coordination of the particle at any time are $x=5 t-2 t^{2}$ and $\mathrm{y}=10 \mathrm{t}$ respectively, where x and y are in metres and t in seconds. The acceleration of the particle at $\mathrm{t}=2 \mathrm{~s}$ is:
A. $5 m / s^{2}$
B. $-4 m / s^{2}$
C. $-8 m / s^{2}$
D. 0

Watch Video Solution

