©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

LAWS OF MOTION

Example

1. A block B is pushed momentarily along a
horizontal surface with an initial velocity v . If μ
is the coefficient of sliding friction betweenB
and the surface, block B will come to rest after a time.

A. v / g
B. $v /(g \mu)$
C. $g \mu / v$
D. g / v
2. Sand is being dropped on a conveyor belt at
the rate of $\mathrm{Mkg} / \mathrm{s}$. Tne force necessary to
keep the belt moving with a constant velocity of $\mathrm{v} m / s$ will be:
A. Mv newton
B. 2 Mv newton
C. $\frac{M v}{2} \neq w \rightarrow n$
D. Zero

Answer:

D Watch Video Solution

3. The mass of a lift is 2000 kg . When the tension in the supporting cable is 28000 N , then its .acceleration is:
A. $4 m s^{-2}$ upwards.
B. $4 m s^{-2}$ downwards.
C. $14 m s^{-2}$ upwards.
D. $30 \mathrm{~ms}^{-2}$ downwards.

Answer:

D Watch Video Solution

4. The figure shows elliptical orbit of a planet
' M ' about the Sun 'S', the shaded area SCD is
twice the shaded area SAB. If t_{1} is the time for
the planet to move from C and D and t_{2} is the
time to move from A to B then.

$$
\text { A. } t_{1}=4 t_{2}
$$

$$
\text { B. } t_{1}=2 t_{2}
$$

$$
\text { C. } t_{1}=t_{2}
$$

$$
\text { D. } t_{1}>t_{2}
$$

Answer:

D Watch Video Solution

5. A particle starts its motion from rest under
the action of a constant force. If the distance covered in first 10 seconds is S_{1} and that covered in the first 20 seconds is S_{2} then:
A. $S_{2}=3 S_{1}$
B. $S_{2}=4 S_{1}$
C. $S_{2}=S_{1}$
D. $S_{2}=2 S_{1}$

Answer:

D Watch Video Solution

6. A block of mass m is in contact with the cart

C as shown in the figure. The coefficient of static friction between the block and the cart
is μ. The accelaration α of the cart that will
prevent the block from falling satisfies:

> A. $\alpha>m \frac{g}{\mu}$ B. $\alpha>\frac{g}{\mu m}$ C. $\alpha \geq \frac{g}{\mu}$ D. $\alpha<\frac{g}{\mu}$

Answer:

- Watch Video Solution

7. Three blocks with masses $\mathrm{m}, 2 \mathrm{~m}, 3 \mathrm{~m}$. are connected by strings, as shown in the figure.

After an upward forced is applied bn block m, the masses move upward at constant speed v.

What is the net force on the block of mass

2 m ? (g is the acceleration due to gravity).

A. zero
B. 2 mg
C. 3 mg

D. 6 mg

Answer:

D Watch Video Solution

8. The upper half of an inclined plane of inclination θ is perfectly smooth lower half is rough. A block starting from rest at the top of the plane will again come to rest at the bottom, if the coefficient of friction between
the block and lower half of the plane is given
by:

> A. $\mu=\frac{1}{\tan \theta}$
> B. $\mu=\frac{2}{\tan \theta}$
> C. $\mu=2 \tan \theta$
> D. $\mu=\tan \theta$

Answer:
(Watch Video Solution
9. A rod $P Q$ of mass M and length L is hinged
at end P. The rod is kept horizontal by a mass
less than string tied at a point Q as shown in
figure. When string is cut, the initial acceleration rod is:

A. $3 \frac{g}{2 L}$
B. $\frac{g}{L}$
C. $2 \frac{g}{L}$
D. $2 \frac{g}{3 L}$

Answer:

- Watch Video Solution

10. A particle of mass m oscillates along x-axis
according to equation $x=a \sin \omega t$. The nature of the graph between momentum and displacement of the particle is:
A. Straight line passing through origin
B. Circle
C. Hyperbola
D. Ellipse

Answer:

- Watch Video Solution

11. A system consists of three m_{1}, m_{2} and m_{3} connected by a string passing over a pulley P .

The mass m_{1} hangs freely and m_{2} and m_{3} are
on a rough horizontal table(the coefficient of
friction $=\mu$) The pulley is frictionless and of negligible mass. The downward acceleration of mass m_{1} is (Assume $m_{1}-m_{2}=m_{3}=m$).

A. $\frac{g(1-g \mu)}{9}$
B. $\frac{2 g \mu}{3}$
C. $\frac{g(1-2 \mu)}{3}$
D. $\frac{g(1-2 \mu)}{2}$

Answer:

D Watch Video Solution

12. A ship A is moving Westwards with a speed
$10 \mathrm{kmh}^{-1}$ and a ship B 100 km South of A , is moving Northwards with a speed of $10 \mathrm{~km}^{-10}$.

The time after which the distance between them becomes shortest is :
A. 5 h
B. $5 \sqrt{2} h$
C. $10 \sqrt{2} h$
D. 0

Answer:

D Watch Video Solution

13. A plank with a box on it at one end is gradually raised about the other end. As the angle of invlination with the horizontal reaches 30°, the box starts to slip and slides
4.0 m down the plank in 4.0 s . The coefficients of static and kinetic friction between the box and the plank will be, respectively:

A. 0.4 and 0.3
B. 0.6 and 0.6
C. 0.6 and 0.5
D. 0.5 and 0.6

Answer:

- Watch Video Solution

14. A rigid ball of mass m strikes a rigid wall at
60° and gets reflected without loss of speed
as shown in the figure below. The value of impulse imparted by the wall on the ball will
be:

A. $m \frac{v}{2}$
B. $m \frac{v}{3}$
C. Mv

D. $2 m V$

Answer:

D Watch Video Solution

15. A body cools- from a temperature $3 T$ to $2 T$
in 10 minutes. The room temperature is T.

Assume that Newton's law of cooling is
applicable . The temperature of the body at
the end of next 10 minutes.

$$
\text { A. } \frac{4}{3} T
$$

B. T
C. $\frac{7}{4} T$
D. $\frac{3}{2} T$

Answer:

- Watch Video Solution

16. A car negotating a curved road of radius R.

The road is banked at an angle θ. The coefficient of friction between the tyres of the
car and the road is μ_{0}. The maximum safe velocity on this road is:

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{g}{R^{2}} \frac{\mu_{s}+\tan \theta}{1-\mu_{s}+\tan \theta}} \\
& \text { B. } \sqrt{g R^{2} \frac{\mu_{s}+\tan \theta}{1-\mu_{s}+\tan \theta}} \\
& \text { C. } \sqrt{g R \frac{\mu_{s}+\tan \theta}{1-\mu_{s}+\tan \theta}} \\
& \text { D. } \sqrt{\frac{g}{R} \frac{\mu_{s}+\tan \theta}{1-\mu_{s}+\tan \theta}}
\end{aligned}
$$

Answer:

