© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

MOTION OF SYSTEM OF PARTICLES AND RIGID BODY

Example

1. A particle moving along x-axis has
accelaration f , at time t , given by
$f=f_{0}\left(1-\frac{t}{T}\right)$ where f_{0} and T are
constants . The particle at $\mathrm{t}=\mathrm{O}$ has zero velocity
. In the time interval between $\mathrm{t}=\mathrm{O}$ and the instant when $\mathrm{f}=0$, the particle's velocity $\left(\nu_{x}\right)$ is:
A. $\frac{1}{2} f_{o} T$
B. $f_{o} T$
C. $\frac{1}{2} f_{o} T^{2}$
D. $f_{o} T^{o}$

Answer:

2. A wheel has angular acceleration of
$3.0 \mathrm{rad} / s^{2}$ and an initial angular speed of
$2.00 \mathrm{rad} / s$. In a time of 2 seconds it has rotated through an angle of (in radian)
A. 4
B. 6
C. 10
D. 12

- Watch Video Solution

3. A mass of 2.0 kg is put on a flat pan attached to a vertical spring fixed on the ground as shown the figure.The mass of the spring and the pan is negligible.When pressed slightly and released the mass executes a simple harmonic motion. The spring constant is $200 \mathrm{~N} / \mathrm{m}$. What should be the minimum amplitude of the motion so that the mass gets
detached from the pan ${ }^{`}$ (Take $g=10 \mathrm{~m} / / \mathrm{s}^{\wedge} 2$)

A. 4.0 cm
B. 8.0 cm
C. 10.0 cm

D. any value less than 12.0 cm

Answer:

D Watch Video Solution

4. A particle of mass moves in the $X Y$ plane
with a velocity v along the straight line $A B$ If
the angular momentum of the particle with respect to orgin O is L_{A} when it is at A and L_{B}
when it is at B, then.

A. $L_{A}<L_{B}$
B. $L_{A}>L_{B}$
C. $L_{A}=L_{B}$
D. The relationship between L_{A} and L_{B}
depends upon the slope of the line $A B$

Answer:

D Watch Video Solution

5. A unifrom rod $A B$ of length l,and mass m is
free to rotate about point A.The rod is release
from rest in the horizontal position Given that
the moment of inertia of the rod about A is $m l^{2}$ $\frac{m l}{3}$, the initial angular acceleration of the
rod will be:

A. $\frac{3 g}{21}$
B. $\frac{2 g}{31}$
C. $m g \frac{1}{2}$
D. $\frac{1}{2} g l$

Answer:

- Watch Video Solution

6. A thin rod of length I and mass M is bent at its midpoint into two halves so that the angle between them is 90° The moment of inertia of the bent rod about an axis passing through the bending point and perpendicular to the plane defined bt the two halves of the rod is

$$
\begin{aligned}
& \text { A. } \frac{M L^{2}}{24} \\
& \text { B. } \frac{M L^{2}}{12} \\
& \text { C. } \frac{M L^{2}}{6}
\end{aligned}
$$

D. $\left(\sqrt{2} \frac{M L^{2}}{24}\right.$

Answer:

D Watch Video Solution

7. A particle of mass m is projected with velocity v making an angle of 45° with the horizontal When the particle lands on the level ground ,the magnitude of the change in its momentum will be
A. 2 mv
B. $\frac{m v}{\sqrt{2}}$
C. $m v \sqrt{2}$
D. zero

Answer:

D Watch Video Solution

8. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{i}+2 \hat{j}+\hat{k} \quad$ and
$-3 \hat{i}-2 \hat{j}+\hat{k}$, respectively.The centre of mass
of this system has a position vector.
A. $-2 \hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{j}-2 \hat{k}$
C. $-\hat{i}+\hat{j}+\hat{k}$
D. $-2 \hat{i}+2 \hat{k}$

Answer:

D Watch Video Solution
9. The mass of a ${ }_{7}^{3} L i$ nucleus is 0.042 u less than the sum of the masses of all its nucleons.

The binding energy per nucleon of ${ }_{7}^{3} L i$ nucleus is nearly
A. 46 MeV
B. 5.6 MeV
C. 3.9 MeV
D. 23 MeV

Answer:

D Watch Video Solution
10. A circular disk of moment of inertia I_{t} is
rotating in a horizontal plane, about its
symmetry axis,with a constant angular, speed
ω_{1} Another disk of moment of inertia I_{b} is dropped coaxially onto the rotating disk initially the second disk has zero angular speed.Eventually both the disks rotate with a constant angular speed ω_{f} The energy lost by the initially rotating disc to friction is :

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{I_{b}^{2}}{\left(I_{t}+I_{b}\right) \omega_{1}^{2}} \\
& \text { B. } \frac{1}{2} \frac{I_{t}^{2}}{\left(I_{t}+I_{b}\right) \omega_{1}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{I_{b}-I_{t}}{\left(I_{t}+I_{b}\right)} \omega_{1}^{2} \\
& \text { D. } \frac{1}{2} \frac{I_{b} I_{t}}{\left(I_{t}+I_{b}\right)} \omega_{1}^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

11. The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through its mid point and perpendicular to is length is 10 . Its moment of inertia about an axis passing through one of its ends and
perpendicular to its ends and perpendicular to
its length is

> A. $I_{0}+M L^{2}$
> B. $I_{0}+\frac{M L^{2}}{2}$
> C. $I_{0}+\frac{M L^{2}}{4}$
> D. $I_{0}+2 M L^{2}$

Answer:

- Watch Video Solution

12. A body projected electrically from the earth
reaches a height equal to earth's radius before
retruning to the earth. The power exerted by
the gravitational force is greatest
A. At the instant just after the body is projected
B. At the highest position of the body
C. At the instant just before the body hits
the earth
D. It remains constant all through

Answer:

D Watch Video Solution

13. When a mass is rotating in a plane about a
fixed point, its angular momentum is directed along
A. the line making an angle of 45° to the
plane of rotation
B. the radius
C. the tangent to the orbit

D. a line perpendicular to the plane of

 rotation
Answer:

D Watch Video Solution

14. A solid cylinder of mass 3 kg is rolling on a horizontal surface wih velocity $4 m s^{-1}$. It collides with a horizontal spring of force constant $200 \mathrm{Nm}^{-1}$.The maximum compression produced in the spring will be
A. 0.6 m
B. 0.7 m
C. 0.2 m
D. 0.5 m

Answer:

D Watch Video Solution

15. An explosion breaks a rock into three parts in a horizontal plane two of them go off at right angles to each other the first part of
mass 1 kg moves with a speed of $12 \mathrm{~m} / \mathrm{s}$ the second part of mass 2 kg moves with a speed of $8 \mathrm{~m} / \mathrm{s}$ and the third aprt flies off with a speed of $4 \mathrm{~m} / \mathrm{s}$ calculate the mass of third part
A. 3 kg
B. 5 kg
C. 7 kg
D. 17 kg

Answer:

16. A car is moving in a circular horizontal track of radius 10 m with a constant speed of
$10 m / s . A$ bob is suspended from the roof of
the car nby a light wire of length 1.0 m .The angle made by the wire with the vertical is
A. 0°
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer:

- Watch Video Solution

17. A particle with total energy E is moving in a potential energy region $U(x)$.Motion of the particle is restricted to the region when
A. $U(x)>E$
B. $U(x)<E$
C. $U(x)=0$
D. $U(x) \leq E$

Answer:

D Watch Video Solution

18. Two discs are rotating about their axes, normal to the discs and passing through the centers of the discs. Disc $_{1}$ has 2 kg mass and 0.2 m radius initial angular velocity of $50 \mathrm{rads}^{-1}$. Disc D_{2} has 4 kg mass, 0.1 m radius and initial angular velocity of $200 \mathrm{rad}^{s}-1$ The two discs are brought in Contact face to face,
with their axes of rotation coincident The final
angular velocity $\left(\in \operatorname{rads}^{-1}\right)$ of the system is
A. 40
B. 60
C. 100
D. 120

Answer:
(Watch Video Solution
19. A charge ' q ' is placed at centre of the line joining two equal charges ' Q ' The system of the three charges will be in equilibrium if ' q ' is equal to

$$
\begin{aligned}
& \text { A. } \frac{Q}{2} \\
& \text { B. }-\frac{Q}{4} \\
& \text { C. } \frac{Q}{4} \\
& \text { D. }-\frac{Q}{2}
\end{aligned}
$$

Answer:

20. A particle of unit mass undergoes one dimensional motion such that its velocity varies according to $\mathrm{v}(\mathrm{x})=\beta x^{-2 n}$ where β and n are constants and x is the position of the particle.The acceleration of the particle as a function of x, is given by:

$$
\begin{aligned}
& \text { A. }-2 n \beta^{2} x^{-4 n-1} \\
& \text { B. }-2 n \beta^{2} x^{-2 n+1} \\
& \text { C. }-2 n \beta^{2} e^{-4 n+1}
\end{aligned}
$$

$$
\text { D. }-2 n \beta^{2} x^{-2 n-1}
$$

Answer:

D Watch Video Solution

21. A radiation of energy E falss normally on a
perfectly reflecting surface. The momentum
transferred to the surface is
A. $\frac{2 E}{C}$
B. $\frac{2 E}{C^{2}}$

C. $\frac{E}{C^{2}}$
 D. $\frac{E}{C}$

Answer:

D Watch Video Solution

22. Three identical spherical shells, each of mass m and radius r are placed as shown in
figure. Consider an axis XX which is touching to two shells and passing through diameter of
third shell:Moment of inertia of the system
consisting of these three spherical shells about ' XX ' axis is

A. $3 m r^{2}$
B. $\frac{16}{5} m r^{2}$
C. $4 m r^{2}$
D. $\frac{11}{5} m r^{2}$

Answer:

D Watch Video Solution

23. If vectors $\vec{A}=\cos \omega t \hat{i}+\sin \omega t \hat{j}$ and $\vec{B}=$ $\frac{\cos (\omega t)}{2} \hat{i}+\frac{\sin (\omega t)}{2} \hat{j}$ are function of
time, then the value of t at which they are orthogonal to each other is:
A. $t=0$
B. $t=\frac{\pi}{4 \omega}$
C. $t=\frac{\pi}{2 \omega}$
D. $t=\frac{\pi}{\omega}$

Answer:

D Watch Video Solution

24. A satellite S is moving in an elliptical orbit around the Earth. The mass of the satellite is
very small compared to the mass of the

Earth.Then, which one of the following statements is correct?
A. the acceleration of S is always
directedtowards the centre of the earth.
B. the angular momentum of S about the
centre of the earth changes in direction,
but its magnitude remains constant
C. the total mechanical energy of S varies
periodically with time

D. the linear momentum of S remains

 constants in magnitude
Answer:

D Watch Video Solution

25. The position vector of a particle \vec{R} as a function of time is given by: $\vec{R}=4 \sin (2 \pi t) \hat{i}+4 \cos (2 \pi t) \hat{j}$ where R is in meters, t is in second \hat{i} and \hat{j} and denote unit vectors along x and y directions respectively

Which one of the following statements is wrong for the motion for the motion of particle?
A. Path of the particle is a circle of radius 4 meter
B. Acceleration vectors is along $-\vec{R}$
C. Magnitude of acceleration vector is $\frac{v^{2}}{R}$
where v is the velocity of particle.
D. Magnitude of the velocity of particle is 8
meter / sec ond

Answer:

D Watch Video Solution

26. From a disc of radius R a mass M, a circular hole of diameter R, whose rim passes through
the centre is cut. What is the moment of inertia of the remaining part of the disc about a perpendicular axis passing through it

$$
\begin{aligned}
& \text { A. } \frac{9 M R^{2}}{32} \\
& \text { B. } \frac{15 M R^{2}}{32}
\end{aligned}
$$

C. $\frac{13 M R^{2}}{32}$
 D. $\frac{11 M R^{2}}{32}$

Answer:

D Watch Video Solution

27. A uniform circular disc of radius 50 cm at is
free to turn about an axis which is perpendicular to its plane and passes through
its centre. It is subjected to a torque which produces a constant angular acceleration of
$2 \mathrm{rad} s^{-2}$. Its net acceleration is $m s^{-2}$ at the end of 2.0 s is approximately.
A. 3.0
B. 8.0
C. 7.0
D. 6.0

Answer:
(Watch Video Solution
28. A bar magnet is hung by a thin cotton
thread in a unifrom horizontal magnetic field and is in equilibrium state.The energy required to rotate it by 60° is W . Now the torque required to keep the magnet in this new position is
A. $\frac{\sqrt{3 W}}{2}$
B. $\frac{2 W}{\sqrt{3}}$
c. $\frac{W}{\sqrt{3}}$
D. $\sqrt{3} W$

Answer:

D Watch Video Solution

29. Two rotating bodies A and B of masses
mand 2 m with moments of inertia
I_{A} and $I_{B}\left(I_{B}>I_{A}\right)$ have equal kinetic energy of rotation. If L_{A} and L_{B} be their angular momenta respectively, then
A. $L_{B}>L_{A}$
B. $L_{A}>L_{B}$
C. $L_{A}=\frac{L_{B}}{2}$

$$
\text { D. } L_{A}=2 L_{B}
$$

Answer:

D Watch Video Solution

30. A light rod of length has two masses m_{1} and m_{2} attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is
A. $\left(m_{1}+m_{2}\right) I^{2}$
B. $\sqrt{m_{1}+m+2} I^{2}$
C. $\frac{m_{1} m_{2}}{m_{1}+m_{2}} I^{2}$
D. $\frac{m_{1}+m_{2}}{m_{1}+m_{2}} I^{2}$

Answer:

- Watch Video Solution

31. Consider a drop of rain water having mass 1 g falling from a height of 1 km .lt hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$.Take 'g'
constant with a value $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the gravitationl force of air is:
A. 1.25J
B. 100 J
C. 10 J
D. $-10 J$

Answer:

D Watch Video Solution
32. Consider a drop of rain water having mass

1 g falling from a height of 1 km .lt hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$.Take 'g' constant with a value $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the resistive force of air is :
A. -8.25 J
B. 8.75 J
C. -8.75 J
D. -8.25 J

- Watch Video Solution

33. One end of string of length L is connected to a particle of mass ' m ' and the other end is connected to small peg on a smooth horizontal table.If the particle moves in circle with speed ' v '. te net force on the particle (directed towards centre) will be (T represents the tension in thestring)

$$
\begin{aligned}
& \text { А. } T+\frac{m v^{2}}{1} \\
& \text { в. } T-\frac{m v^{2}}{1}
\end{aligned}
$$

C. Zero
D. T

Answer:

D Watch Video Solution

34. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}.

They are brought in to contanct face to face
coinciding the axis of rotation. The expression
for loss of energy during this process is

$$
\text { A. } \frac{1}{4} I\left(\omega_{1}-\omega_{2}\right)^{2}
$$

B. `I(omega_1-omega_2)^2
C. $\frac{1}{8}\left(\omega_{1}-\omega_{2}\right)^{2}$
D. $\frac{1}{2} I\left(\omega_{1}-\omega_{2}\right)^{2}$

Answer:

35. Which of the following statements are correct?
A. Centre of mass of a body always
coincides with the centre of gravity of
the body

B. Centre of mass of a body is the point at

which the total gravitational torque on
the body is zero
C. A couple on a body produce both translational and rotational motion in a body.
D. Mechanical advantage greater than one
means that small effort can be used to
lift a large load

Answer:

D Watch Video Solution

