© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

OSCILLATIONS AND WAVES

Example

1. The phase difference between the instantaneous velocity \& acceleration of a particle executing simple harmonic motion
is
A. zero
B. 0.5π
C. π
D. 0.707π

Answer:

D Watch Video Solution

2. A particle executing simple harmonic motion has a kinetic energy $K_{o} \cos ^{2} \omega t$. The maximum values of the potential energy and the total energy are, respectively.. \qquad
A. K_{0} and $2 K_{0}$
B. 0 and $2 K_{0}$
C. $\frac{K_{0}}{2}$ and K_{0}
D. K_{0} and K_{0}

Answer:

D Watch Video Solution

3. A partical executes simple harmonic oscillation with an amplitude a. the period of oscillation is T The minimum time taken by the partical to travel half of the amplitude from the equilibrium position is:
A. $T / 2$
B. $T / 4$
C. $T / 8$
D. $T / 12$
4. Two simple harmonic motions of angular frequencies 100 and $1000 \mathrm{rad} / \mathrm{s}$ have the same displacement amplitude. The ratio of their maximum acceleration is
A. $1: 10$
B. $1: 10^{2}$
C. $1: 10^{3}$
D. $1: 10^{\wedge} 4{ }^{`}$

Answer:

5. Two periodic waves of intensities I_{1} and I_{2} pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is:
A. $I_{1}+I_{2}$
B. $\left(\sqrt{I}_{1}+\sqrt{I}_{2}\right)^{2}$
C. $\left(\sqrt{I}_{1}-\sqrt{I}_{2}\right)^{2}$
D. $2\left(I_{1}+I_{2}\right)$

Answer:

- Watch Video Solution

6. A point performs simple harmonic oscillation of period T and the equation of motion is given by $\mathrm{x}=a \sin \left(w t+\frac{\pi}{6}\right)$.

After the elapse of what fraction of the time period the velocity of the point will be equal to half of its maximum velocity?
A. $\frac{T}{8}$
B. $\frac{T}{6}$
C. $\frac{T}{3}$
D. $\frac{T}{12}$

Answer:

D Watch Video Solution

7. Two points are located at a distance of 10 m and 15 m from the source of oscillation. The period of oscillation is 0.05 sec
and the velocity of the wave is $300 \mathrm{~m} / \mathrm{s}$. What is the phase difference between the oscillation of two points?
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. π
D. $\frac{\pi}{6}$

Answer:

D Watch Video Solution

8. The wave described by $y=0.25 \sin (10 \pi x-2 \pi f)$, where x and y are in metres and t in seconds, is a wave travelling along the:
A. - vexdirectionwithequency $1 H z$
B. + vexdirectionwithequencypi Hz and wave $\leq n>h$ lambda=0.2m` C. + vexdirectionwithequency \(1 H z\) and wave \(\leq n>h\) lambda=0.2m`
D.

- vexdirectionwithamplitude $0.25 m$ and wave $\leq n>h$
lambda=0.2m`

Answer:

D Watch Video Solution

9. A simple pendulum performs simple harmonic motion about $x=0$ with an amplitude and time period T. The speed of the pendulum at $x=\frac{a}{2}$ will be:
A. $\frac{\pi a}{T}$
B. $\frac{3 \pi^{2} a}{T}$
C. $\frac{\pi a \sqrt{3}}{T}$
D. $\frac{\pi a \sqrt{3}}{2} T$

Answer:

(D) Watch Video Solution

10. The displacement of a particle along the x-axis is given by $x=a \sin ^{2} \omega t$. The motion of the particle corresponds to
A. simple harmonic motion of frequency ω / π
B. simple harmonic motion of frequency $3 \omega / 2 \pi$
C. non simple harmonic motion
D. simple harmonic motion of frequency $\omega / 2 \pi$

Answer:

- Watch Video Solution

11. The period of oscillation of a mass m suspended from a spring of negligible mass is T. If along with it another mass M is also suspended the period of oscillation will now be:
A. T
B. $T / \sqrt{2}$
C. $2 T$
D. $\sqrt{2} T$

Answer:

D Watch Video Solution

12. A transverse wave is represented by $y=A \sin (\omega t-k x)$.

For what value of the wavelength is the wave velocity equal to the maximum particle veloctiy?
A. $\frac{\pi A}{2}$
B. πA
C. $2 \pi A$
D. A

Answer:

D Watch Video Solution

13. A tuning fork of frequency 512 Hz makes 4 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per sec when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was:
A. 510 Hz
B. 514 Hz
C. 516 Hz
D. 508 Hz

Answer:

D Watch Video Solution

14. Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a 700 Hz acoustic wave as it enters brass from warm air
A. Decreases by a factor 20
B. Decreases by a factor 10
C. Increases by a factor 20
D. Increases by a factor 10

Answer:

15. When a string is divided into three segments of length l_{1}, l_{2} and l_{3} the fundamental frequences of these three segments are v_{1}, v_{2} and v_{3} respectively. The original fundamental frequency (v) of the string is
A. $v=v_{1}+v_{2}+v_{3}$
B. $\frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}}+\frac{1}{v_{3}}$
C. $\frac{1}{\sqrt{v}}=\frac{1}{\sqrt{v_{1}}}+\frac{1}{\sqrt{v_{2}}}+\frac{1}{\sqrt{v_{3}}}$
D. $\sqrt{v}=\sqrt{v_{1}}+\sqrt{v_{2}}+\sqrt{v_{3}}$

Answer:

16. The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are
A. $k g m s^{-2}$
B. $k g s^{-1}$
C. $k g s$
D. $k g m s^{-2}$

Answer:

(D) Watch Video Solution

17. Two sources P and Q produce notes of frequency 660 Hz each. A listener moves from P to Q with a speed of $1 m s^{-1}$. If
the speed of sound is $330 \mathrm{~m} / \mathrm{s}$, then the number of beats heard by the listener per second willl be
A. zero
B. 4
C. 8
D. 2

Answer:

- Watch Video Solution

18. A wave travelling in the + ve x-direction having displacement along y-direction as 1 m , wavelength $2 \pi m$ and frequency of $\frac{1}{\pi} H z$ is represented by
A. $y=\sin (x-2 t)$
B. $y=\sin (2 \pi x-2 \pi t)$
C. $y=\sin (10 \pi x-20 \pi t)$
D. $y=\sin (2 \pi x-2 \pi t)$

Answer:

D Watch Video Solution

19. If we study the vibration of a pipe open at both ends, then which of the following statement is not true?
A. Open end will be anti-node
B. Odd harmonics of the fundamental frequency will be
C. All harmonics of the fundamental frequency will be generated
D. Pressure change will be maximum at both ends

Answer:

- Watch Video Solution

20. A source of unknown frequency gives 4 beats $/ s$, when sounded with a source of known frequency 250 Hz . The second harmonic of the source of unknown frequency gives five beats per second, when sounded with a source of frequency 513 Hz . The unknown frequency is
A. 254 Hz
B. 246 Hz
C. 240 Hz
D. 260 Hz

Answer:

D Watch Video Solution

21. The oscillation of a body on a smooth horizontal surface is represented by the equation, $X=A \cos (\omega t)$ where $X=$ displacement at time t `omega $=$ frequency of oscillation Which one of the following graphs shows correctly the variation a with it?
A.

B.

C.

D.

Answer:

Watch Video Solution
22. A solid cylinder of mass 50 kg and radius 0.5 m is free to rotate about the horizontal axis. A massless string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleratrion of 2 revolutions s^{-2} is
A. $25 N$
B. 50 N
C. 78.5 N
D. $157 N$

Answer:

23. If n_{1}, n_{2} and n_{3} are the fundamental frequency of three segemnts into which a string is divided, then the original fundamental frequency n of the string is given by
A. $\frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$
B. $\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}_{1}}+\frac{1}{\sqrt{n}_{2}}+\frac{1}{\sqrt{n}_{3}}$
C. $\sqrt{n}=\sqrt{n}_{1}+\sqrt{n}_{2}+\sqrt{n}_{3}$
D. $n=n_{1}+n_{2}+n_{3}$

Answer:

- Watch Video Solution

24. The number of possible natural oscillations of air column in a pipe closed at one end of length 85 cm whose
frequencies lie below 1250 Hz are (velocity of sound $=$ $340 \mathrm{~ms}^{-1}$)
A. 4
B. 5
C. 7
D. 6

Answer:

D Watch Video Solution

25. When two displacement represented by $y_{1}=a \sin t(\omega t)$
and $y_{2}=b \cos t(\omega t)$ are superimposed the motion is
A. simple harmonic with amplitude $\frac{a}{b}$
B. simple harmonic with amplitude $\sqrt{a^{2}+b^{2}}$
C. simple harmonic with amplitude $\frac{a+b}{2}$
D. not a simple harmonic

Answer:

D Watch Video Solution

26. For a parallel beam of monochromatic light of wavelength
λ diffraction is produced by a single slit whose width 'a' is of the order of the wavelength of the light. If ' D ' is the distance of the screen from the slit, the width of the central maxima will be:
A. $\frac{D \lambda}{a}$
B. $\frac{D a}{\lambda}$
C. $\frac{2 D a}{\lambda}$
D. $\frac{2 D \lambda}{a}$

Answer:

D Watch Video Solution

27. The fundamental frequency of a closes organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at both the ends. The length of the organ pipe open at both the ends is \qquad
A. 100 cm
B. 120 cm
C. 140 cm
D. 80 cm

Answer:

D Watch Video Solution

28. A particle is executing SHM along a straight line. Its velocities at dsitances x_{1} and x_{2} from the mean position are
V_{1} and V_{2}, respectively. Its time period is
A. $2 \pi \sqrt{\frac{x_{2}^{2}-x_{1}^{2}}{V_{1}^{2}-V_{2}^{2}}}$
B. $2 \pi \sqrt{\frac{V_{1}^{2}-V_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}}$
C. $2 \pi \sqrt{\frac{V_{1}^{2}-V_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}}$
D. $2 \pi \sqrt{\frac{x_{1}^{2}-x_{2}^{2}}{V_{1}^{2}-V_{2}^{2}}}$

Answer:

D Watch Video Solution

29. Two similar springs p and Q have spring constants $K p$ and kQ, such that $K p>K Q$. The are stretched, first by the same amount (case a), then by the same force (case b). The work done by the springs $W p$ and $W Q$ are related as, in case (a) and case (b), respectively:
A. $W_{P}>W_{Q}$, W_Q gt W_P $^{\prime}$
B. $W_{P}=W_{Q}, W_{Q}>W_{P}$
C. $W_{P}=W_{Q}, W_{Q}<W_{P}$
D. $W_{P}=W_{Q}, W_{P}>W_{Q}$

Answer:

- Watch Video Solution

30. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is
A. $\frac{5}{27}$
B. $\frac{4}{9}$
C. $\frac{9}{4}$
D. $\frac{27}{5}$

Answer:

31. A partcile is executing a simple harmonic motion.Its maximum acceleration is α and maximum velocity is β. Then, its time periods of vibartion will be
A. $\frac{2 \pi \beta}{\alpha}$
B. $\frac{\beta^{2}}{\alpha^{2}}$
C. $\frac{\alpha}{\beta}$
D. $\frac{\beta^{2}}{\alpha}$

Answer:

32. A source od sound S emitting waves of frequency 100 Hz and an observer o are located at some distance from each other. The source is moving with a speed of $19.4 m s^{-1}$ at an angle of 60° with the source observe line as shwon in the figure. The observer is at rest. The apparent frequency observed by the observer (velocity of sound in air $330 \mathrm{~ms}^{-1}$ is:

A. 97 Hz
B. 100 Hz
C. 103 Hz
D. 106 Hz

Answer:

D Watch Video Solution

33. A string is stretched between fixed points separated by 75.0 cm . It is obsereved to have resonant frequencies of 420 Hz and 315 Hz . They are no other resonant frequencies between these two. The lowest resonant frequencies for this
string is
A. 105 Hz
B. 155 Hz
C. 205 Hz
D. 10.5 Hz

Answer:

D Watch Video Solution

34. A body of mass m is attached to lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3 s . When the mass m is increased by 1 kg , the time period of oscillations becomes 5 s .

Find the value of m is kg .
A. $\frac{16}{9}$
B. $\frac{9}{16}$
C. $\frac{3}{4}$
D. $\frac{4}{3}$

Answer:

- Watch Video Solution

35. The second overtone of an open organ pipe has the same frequency as the first overtone of a closed pipe L metre long. The length of the open pipe will be
A. $\frac{L}{2}$
B. $4 L$
C. L
D. $2 L$

Answer:

- Watch Video Solution

36. Three sound waves of equal amplitudes have frequencies
$(n-1), n,(n+1)$. They superimpose to give beats. The number of beats produced per second will be
A. 3
B. 2
C. 1
D. 4

Answer:

37. A siren emitting a sound of frequency 800 Hz moves away from an observer towards a cliff at a speed of $15 \mathrm{~ms}^{-1}$ Then, the frequency of sound that the observer hears in the echo reflected from the cliff is:
A. 885 Hz
B. 765 Hz
C. 800 Hz
D. 838 Hz

Answer:

38. An air column, closed at one end and open at the other resonates with a tuning fork when the smallest length of the cloumn is 50 cm . The next larger length of the column resonating with the same tuning frok is:
A. 200 cm
B. 66.7 cm
C. 100 cm
D. 150 cm

Answer:

39. The two nearest harmonics of a tube closed at one end and open at other end are 220 Hz and 260 Hz . What is the fundamental frequency of the system?
A. 20 Hz
B. 30 Hz
C. 40 Hz
D. 10 Hz

Answer:

(D) Watch Video Solution

40. A particle executes linear simple harmonic motion with an amplitude of 3 cm . When the particle is at 2 cm from the
mean position, the magnitude of its velocity is equal to that of its acceleration. Then find its time period in seconds.
A. $\frac{\sqrt{5}}{2 \pi}$
B. $\frac{4 \pi}{\sqrt{5}}$
C. $\frac{2 \pi}{\sqrt{3}}$
D. $\frac{\sqrt{5}}{\pi}$

Answer:

