©゙’ doubtnut

PHYSICS

BOOKS - SARAS PUBLICATION

THERMODYNAMICS

Example

1. If the cold junction of a thermocouple is
kept at $0^{\circ} C$ and the hot junction is keot at
$T^{\circ} C$ then the relation between neutral
temperature $\left(T_{n}\right)$ and temperature of inversion $\left(T_{i}\right)$ is :

$$
\begin{aligned}
& \text { А. } T_{n}=T_{i}+T \\
& \text { В. } T_{n}=T_{i} / 2 \\
& \text { С. } T_{n}=2 T_{i} \\
& \text { D. } T_{n}=T_{i}-T
\end{aligned}
$$

Answer:

D Watch Video Solution

2. In thermodynamic processes which of the following statements is not true ?
A. In an isochoric process pressure remains
constant
B. In an isothermal process the
temperature remains constant
C. In an adiabatic process $P V^{\gamma}=$ constant
D. In an adiabatic process the system is
insulated from the surroundings

Answer:

D Watch Video Solution

3. A black body at $227^{\circ} \mathrm{C}$ radiates heat at the rate of $7 \mathrm{cals} / \mathrm{cm}^{-2} s^{-1}$ At a temperature of $727^{\circ} \mathrm{C}$,the rate of heat radiated in the same units will be
A. 50
B. 112
C. 80
D. 60

Answer:

D Watch Video Solution

4. If ΔU and ΔW represent the increase in internal energy and work done bt the system respectively in a thermodynamical process, which of the following is true?
A. $\Delta U=-\Delta W$, in a adiabatic process
B. $\Delta U=\Delta W$, in a isothermal process
C. $\Delta U=\Delta W$, in a adiabatic process
D. $\Delta U=-\Delta W$, in a isothermal process

Answer:

D Watch Video Solution

5. A thermodynamic system is taken through
the cycle $A B C D$ as shown in figure. Heat
rejected by the gas during the cycle is:

A. 4PV
B. $\frac{1}{2} P V$
C. PV
D. 2 PV

Answer:

D Watch Video Solution

6. The potential energy of a particle in a force
field is : $\mathrm{U}=\frac{A}{r^{2}}-\frac{B}{r^{1}}$, where A and B are positive constant and r is the centre of the
field. For stable equilibrium, the distance of the particle is :
A. $2 A / B$
B. A / B

C. B / A

D. $B / 2 A$

Answer:

- Watch Video Solution

7. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature the ratio $\frac{C_{p}}{C_{v}}$ for the gas is
A. $\frac{4}{3}$
B. 2
C. $\frac{5}{3}$
D. $\frac{3}{2}$

Answer:

D Watch Video Solution

8. Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation
between them is r.Now the strings are rigidly
clamped at half the height.The equilibrium
separation between the balls now become:

A. $\frac{1}{\sqrt{2}}$
B. $\frac{r}{3 \sqrt{2}}$
C. $\frac{2 r}{\sqrt{3}}$
D. $\frac{2 r}{\sqrt{3}}$

Answer:

D Watch Video Solution

9. A monatomic gas at a pressure P, having a volume V expands isothermally to a volume 2 V and then adiabatically to a volume 16 V . The final pressure of the gas is
(Take $\gamma=\frac{5}{3}$)
A. 64 P
B. 32 P
c. $\frac{P}{64}$
D. 16P

Answer:

D Watch Video Solution

10. A thermodynamic system undergoes cyclic process $A B C D A$ as shown in figure.
A. $P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $\frac{P_{0} V_{0}}{2}$
D. zero

Answer:

- Watch Video Solution

11. Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to
be 1.5 times the density of B. The ratio of molecular weights of A and B is :

> A. $\frac{1}{2}$
> B. $\frac{2}{3}$
> C. $\frac{3}{4}$
> D. 2

Answer:
(Watch Video Solution
12. An ideal gas compressed to half its initial
volume by means of several processes. Which
of the process results in the maximum work done on the gas?
A. Isothermal
B. Adiabatic
C. Isobaric
D. Ispchoric

Answer:

13. A rod of weight W is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position.The knives are at a distance d from each other The centre of mass of the rod is at distance x from A.The normal reaction on A is

$$
\begin{aligned}
& \text { A. } \frac{W d}{x} \\
& \text { B. } W \frac{(d-x)}{x} \\
& \text { C. } W \frac{(d-x)}{d}
\end{aligned}
$$

D. $\frac{W x}{d}$

Answer:

D Watch Video Solution

14. A gas is compressed isothermally to half its
initial volume.The same gas is compressed
separately through an adiabatic process until its column is again reduced to half Then.
A. Which of the case (whether compression
through isothermal or through adiabatic
process) requires more work will depend
upon the atomicity of the gas
B. Compressing the gas isothermally will
require more work to be done
C. Compressing the gas through adiabatic process will require more work to be done

D. Compressing the gas isothermally or

 adiabatically will require the same amount of work
Answer:

D Watch Video Solution

15. Therodynamic processes are indicated in
the following diagram.

Column-1

Column-2

P. Process I a. Adiabatic Q. Process II b. Isobaric

R. Process III c. Isochoric S. Process IV d. Isothermal

A. $P \rightarrow c, Q \rightarrow a, R \rightarrow d s \rightarrow b$
B. $P \rightarrow c, Q \rightarrow d, R \rightarrow b S \rightarrow a$
C. $P \rightarrow d, Q \rightarrow b, R \rightarrow a S \rightarrow c$
D. $P \rightarrow a, Q \rightarrow c, R \rightarrow b S \rightarrow b$

Answer:

-

