©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

WORK, ENERGY AND POWER

Example

1. If Q, E and W denote respectively the heat added, change in internal energy and the work done in a closed cyclic process, then
A. $W=0$
B. $\mathrm{Q}=\mathrm{W}=0$
C. $\mathrm{E}=0$
D. $\mathrm{Q}=\mathrm{O}$

Watch Video Solution

2. A closet loop PQRS carrying a current is placed in a uniform magnetic field. If the magnetic forces on segments PS, SR and RQ are F_{1}, F_{2} and F_{3} respectively and are in the plane of the paper and along the directions
shown, the force on the segment QP is:

A. $F_{3}-F_{1}-F_{2}$
B. $\sqrt{\left(F_{3}-F_{1}\right)^{2}+F_{2}^{2}}$
C. $\sqrt{\left(F_{3}-F_{1}\right)^{2}-F_{2}^{2}}$
D. $F_{3}-F_{1}-F_{2}$

Answer:

D Watch Video Solution

3. An electric kettle takes 4 A current at 220 V . How much time will it take to boil 1 Kg of water from temperature 20° ? The temperature of boiling water is $100^{\circ} \mathrm{C}$.
A. 6.3 min
B. 8.4 min
C. 12.6 min
D. 4.2 min

Answer:

4. A particle moves in a straight line with a constant acceleration. It changes its velocity from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ while passing through a distance 135 m in t second. The value of t is:
A. 10
B. 1.8
C. 12
D. 9

Answer:

- Watch Video Solution

5. If F is the force acting on a particle having position vector \vec{r} and $\vec{\tau}$ be the torque of this force about the origin , then,
A. $\vec{r} \cdot \vec{\tau}>0$ and $\vec{F} \cdot V e c \tau<0$
B. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot V e c \tau=0$
C. $\vec{r} \cdot$ Vect $=0$ and $\vec{F} \cdot \vec{\tau} \neq 0$
D. $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{f} . V e c \tau=0$

Answer:

- Watch Video Solution

6. The internal energy change in a system that has absorbed 2 kcal of heat and done 500 J of work is
A. 6400 J
B. 5400J
C. 7900J
D. 8900 J

Answer:

7. A source S_{1} is producing 10^{15} photons per second of wavelength $5000 \stackrel{\circ}{A}$ Another source S_{2} is producing 1.02×10^{15}, photon per second of wavelength $5100 \AA$. Then (power of S_{2}) (power of S_{1})is equal to:
A. 1
B. 1.02
C. 1.04
D. 0.98

Answer:

- Watch Video Solution

8. Two positive ions, each carrying a charge q, are separated by a distance
d. If F is the force of repulsion between the ions, the number of electrons missing from each ion will be (e being the charge on an electron).
A. $\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}$
B. $\sqrt{\frac{4 \pi \varepsilon_{0} F e^{2}}{d^{2}}}$
C. $\sqrt{\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}}$
D. $\left.\frac{4 \pi \varepsilon_{0} F d^{2}}{q^{2}}\right)$

Answer:

- Watch Video Solution

9. A body of mass M hits normally a rigid wall with velocity V and bounces back with the same velocity. The impulse experienced by the body is:
A. zero
B. MV
C. 1.5 MV
D. 2 MV

Answer:

10. The potential energy of a system increases, if work is done
A. Upon the system by a conservative force
B. Upon the system by a non conservative force
C. By the system against a conservative force
D. By the system against a non - conservative force

Answer:

- Watch Video Solution

11. Force F on a particle moving in a straight line varies with distanced d as shown in the figure. The work done on the particle during its
displacement of 12 m is:

A. 13J
B. 18J
C. 21J
D. 26 J

Answer:

- Watch Video Solution

12. The power obtained in a reactor using U235 disintegration is 1000 Kw .

The mass decay of U235 per hour is:
A. 1 microgram
B. 10 microgram
C. 20 microgram
D. 40 microgram

Answer:

- Watch Video Solution

13. If the radius of a star is R and it acts as a block body. What would be the temperature of the star, in which the rate of energy production is Q ?
A. $\left(Q / 4 \pi R^{2} \sigma\right)^{-1 / 2}$
B. ${ }^{\prime}\left(4 \text { pi } R^{\wedge} 2 Q / / \text { sigma }\right)^{\wedge}(-1 / / 2)$
C. $\left(Q / 4 \pi R^{2} \sigma\right)^{1 / 4}$
D. $\left.Q / 4 \pi R^{2}\right) \sigma$

Answer:

14. A body of mass m falls from earth's surface at a height equal to twice the radius (R) each. Then the change in P.E. of body will be
A. $m g 2 R$
B. $\frac{2}{3} m g R$
C. $3 m g R$
D. $\frac{1}{3} m g R$

Answer:

- Watch Video Solution

15. A person holdinga riffe (mass of person and riffe together is 100 kg) stands on a smooth surface and fires 10 shots horizontally, in5s. Each bullet has a mass of 10 g with a muzzle velocity of ${ }^{\prime} 800 \mathrm{~ms}^{\wedge}(-1)$.The final
velocity acquired the person and the average force exerted on the person are:
A. $-1.6 m s^{-1}, 8 N$
B. $-0.08 m s^{-1}, 16 N$
C. $-0.8 m s^{-1}, 16 N$
D. $-1.6 m s^{-1}, 16 N$

Answer:

- Watch Video Solution

16. One coolie takes 1 minute to raise a suitcase through a height of $2 m$ but the second coolie takes 30 s to raise the same suitcase to the same height. The powers of two coolies are in the ratio':
A. 1:2
B. 1:3
C. 2:1
D. 3: 1

Answer:

- Watch Video Solution

17. A system is taken from state a to state c by two paths adc and abc as shown in the figure. The internal energy at a is $U_{a}=10 \mathrm{~J}$.Along the path adc the amount of heat absorbed $\delta Q_{1}=50 J$ and the work obtained $\delta W_{1}=20 J$ whereas along the path abc the heat absorbed $\delta Q_{2}=36 J$

The amount of work along the path abc is :

A. 6 J
B. 10J
C. 12J
D. 36 J

Answer:
18. A projectile is fired from the surface of the earth with a velocity of $5 m s^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a with a velocity of $3 \mathrm{~ms}^{-1}$ at the same angle follows a trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on planet is $\left(\in m s^{-2}\right.$ is $\left(\right.$ giveng $=9.8 m s^{-2}$.
A. 3.5
B. 5.9
C. 16.3
D. 110.8

Answer:

- Watch Video Solution

19. The force F acting on a particle of mass m is indicated by the force time graph shown below. The change in momentum of the particle over
the time interval from zero to 8 s is:

A. 24 Ns
B. 20 Ns
C. 12 Ns
D. 6 Ns

Answer:

- Watch Video Solution

20. A body of mass 4 m is lying in xy - plane at rest. It suddenly explodes into three pieces. Two pieces each of mass move perpendicular to each
other with equal speed v . The total kinetic energy generated due to explosion is
A. $m v^{2}$
B. $\frac{3}{2}\left(m v^{2}\right)$
C. $s m v^{2}$
D. $4 m v^{2}$

Answer:

- Watch Video Solution

21. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$
.The value of α for which angular momentum about origin is conserved is:
A. 1
B. -1
C. 2
D. zero

Answer:

- Watch Video Solution

22. Two particles A and B , move with constant velocities, \vec{v}_{1} and \vec{v}_{2}. At the initial momentum their position vectors are \vec{r}_{1} and \vec{r}_{2} respectively. The condition for particle A and B for their collision is:
A. $r_{1}-r_{2}=v_{1}-v_{2}$
B. $\frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\left|\vec{v}_{2}-\vec{v}_{1}\right|}$
C. $r_{1} . v_{1}=r_{2} . v_{2}$
D. $r_{1} \frac{6}{5} v_{1}=r_{2} \times v_{2}$

Answer:

23. On a frictionless surface a block of mass. M moving at a speed v collides elastically with another block of same mass M which is initially at rest. After collision the first block moves at an angle θ to its initial direction and has a speed $\frac{v}{3}$. The second block's speed after the collision is:
A. $\frac{\sqrt{3}}{2}$
B. $\frac{2 \sqrt{2}}{3}$
C. $\frac{3}{4}$
D. $\frac{3}{\sqrt{2}}$

Answer:

- Watch Video Solution

24. A block A of mass m_{1} rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass m_{2} is suspended. The
coefficient of kinetic friction between the block and the table is μ. When the block A is sliding on the table the tension in the string is :
A. $\left(\left(m_{2}-\mu_{k} m_{1}\right) g\right) \frac{)}{m_{1}+m_{2}}$
B. $\frac{m_{1} m_{2}\left(1+\mu_{k}\right) g}{m_{1}+m_{2}}$
C. $\left(m_{1} m_{2} 1-\mu_{k}\right) g \frac{)}{m_{1}+m_{2}}$
D. $\frac{\left(m_{2}+\mu_{k} m_{1}\right) g}{m_{1}+m_{2}}$

Answer:

- Watch Video Solution

25. Two particles of masses $m_{1}, m_{-} 2$ movewith \int ialvelocitymu_ 1 and mu_2
. Oncollision, $o \neq$ ofthepartic $\leq s \geq$ texcited \rightarrow higher \leq vel, after \mid oो epsilon. Iff \in alvelocitiesofpartic \leq sbev_1 and v_2` then we must have:
A. $\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-\varepsilon$
B. $\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}-\varepsilon=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
C. $\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}+\varepsilon=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
D. $m_{1}^{2} u_{1}+\frac{1}{2} m_{2}^{2} u_{2}-\varepsilon=m_{1}^{2} v_{1}+m_{2}^{1} v_{1}+m_{2}^{2} v_{2}$

Answer:

- Watch Video Solution

26. A wind with speed $40 \mathrm{~m} / \mathrm{s}$ blows parallel to the roof of a house. The area of the roof is $250 \mathrm{~m}^{2}$. Assuming that the pressure inside the house is atmospheric pressure, the force exerted by the wind on the roof and the direction of the force will be: $\left(\rho_{\mathrm{air}}=1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)$
A. $4.8 \times 10^{5} N$, upwards
B. $2.4 \times 10^{5} \mathrm{~N}$, upwards
C. $2.4 \times 10^{5} \mathrm{~N}$, downwards
D. $4.8 \times 10^{5} \mathrm{~N}$, downwards

Answer:

- Watch Video Solution

27. Three blocks A, B and C of mass $4 \mathrm{~kg}, 2 \mathrm{~kg}$ and 1 kg respectively, are in contact on frictionless surface as shown .If a force appliedon 14 N is applied on the 4 kg block then the contact force between A and B is :
A. 6 N
B. 8 N
C. 18 N
D. 2 N

Answer:

28. A particle mass m is driven by a machine that delivers a constant power K watts . If the particle starts from rest the force on the particle at time t is:
A. $\sqrt{m k} t^{-\frac{1}{2}}$
B. $\sqrt{2 m k} t^{-\frac{1}{2}}$
C. $a \frac{1}{2} \sqrt{m k} t^{-\frac{1}{2}}$
D. $\sqrt{m \frac{k}{2}} t^{-\frac{1}{2}}$

Answer:

- Watch Video Solution

29. A particle moves so that its position vector is given by $\vec{r}=\cos \omega t \widehat{x}+\sin \omega t \hat{y}$. Where ω is a constant. Which of the following is true?
A. Velocity is perpendicular to \vec{r} and acceleration is directed away from the origin.
B. Velocity and acceleration both are perpendicidar to \vec{r}
C. Velocity and acceleration both are parallel to \vec{r}
D. Velocity is perpendicular to \vec{r} and acceleration is directed towards the origin

Answer:

- Watch Video Solution

30. A refrigerator works between $4^{\circ} \mathrm{C}$ and 30°, it is required to remove 600 calories of heat every second in order to keep the temperature of the refrigetor space constant. The power required is :(Take1 cal = 4.2 joules).
A. 2365 W
B. 2.365 W
C. 23.65 W

Answer:

- Watch Video Solution

31. A body of mass 1 kg begins to more under the action of a time dependent force $F=\left(2 t \hat{i}+3 t^{2} \hat{j}\right) N$ where \hat{i} and \hat{j} are unit vectors along x and y axes. What power will be developed by a force at time t ?
A. $\left(2 t^{3}+3 t^{5}\right) W$
B. $\left(2 t^{2}+3 t^{3}\right) W$
C. $\left(2 t^{2}+3 t^{4}\right) W$
D. $\left(2 t^{3}+3 t^{4}\right) W$

Answer:

- Watch Video Solution

32. A square $A B C D$ carrying a current I, is placed near and coplanar $X Y$ carrying a current I, the net force on the loop will be:

A. $\frac{\mu_{0} l i L}{2} \pi$
B. $\frac{2 \mu_{0} l i}{3} \pi$
C. $\frac{\mu_{0} l i}{2} \pi$
D. $\frac{2 \mu_{0} l i L}{3} \pi$

Answer:
33. In the given figure , $a=15 \mathrm{~m} / \mathrm{s}^{2}$ represent the total acceleration of a particle moving in the clockwise direction in a circle of radius $\mathrm{R}=2.5 \mathrm{~m}$ at a given instant of time. The speed of the particle is ,

A. $5.7 m / s$
B. $6.2 \mathrm{~m} / \mathrm{s}$
C. $4.5 \mathrm{~m} / \mathrm{s}$
D. $5.0 \mathrm{~m} / \mathrm{s}$

D Watch Video Solution

34. Two identical balls A and B having velocities of $0.5 M / s$ and $-0.3 m / s$ respectively collide elasticity in one dimension. The velocities of B and A after the collision respectively will be:
A. $-0.3 m / s$ and $0.5 m / s$
B. $0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
C. $-0.5 m / s$ and $0.3 m / s$
D. $0.5 m / s$ and $-0.3 m / s$

Answer:

35. A particle moves from a point $(-2 \hat{i}+5 \hat{j})$ to $(4 \hat{j}+3 \vec{k})$ when a force of $(4 \hat{i}+3 \hat{j}) \mathrm{N}$ is applied. How much work has been done by the force?
A. 5 J
B. 2 J
C. 8 J
D. 11J

Answer:

- Watch Video Solution

36. A spring of force constant k is cut into the length of ratio $1: 2: 3$. They are connected in series and the new force constant is k^{\prime}. Then they are connected in parallel and force constant is k^{k}, Then $\mathrm{k}^{\prime}: \mathrm{k}^{\prime \prime}$:

$$
\text { A. } 1: 9
$$

B. $1: 11$
C. 1: 14
D. 1: 16

Answer:

- Watch Video Solution

37. Two blocks A and B masses $3 m$ and m respectively are connected by a massless and inextensible string.The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration A
and B immediately after the string is cut , are respectively:

A. $\frac{g}{3}, g$
B. g, g
C. $\frac{g}{3}, \frac{g}{3}$
D. $g, \frac{g}{3}$

- Watch Video Solution

38. The diagram below show regions of equipotential.A positive charge is moved from A To B in each diagram.

A. In all the four cases the work done is the same
B. Minimum work is required to move q in figure (a)
C. Maximum work is required to move q in figure (b)
D. Maximum work is required to move q in figure (c)

Answer:

- Watch Video Solution

39. A rope is wound round a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N .
A. $0.25 \mathrm{rad} / \mathrm{s}^{2}$
B. $25 \mathrm{rad} / \mathrm{s}^{2}$
C. $5 m / s^{2}$
D. $25 m / s^{2}$

Answer:

