©゙doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

BASIC CONCEPTS OF CHEMISTRY AND CHEMICAL CALCULATIONS

Calculations Based On Stoichiometry

1. How many moles of hydrogen is required to produce 10 moles of ammonia ?
2. Calculate the amount of water produced by the combustion of 32 g of methane.

- View Text Solution

3. How much volume of carbon dioxide is produced when 50 g of calcium carbonate is heated completely under standard conditions?

- View Text Solution

4. How much volume of chlorine is required to form 11.2 L of HCl at 273 K and 1 atm pressure?
5. Calculate the percentage composition of the elements present in magnesium carbonate. How many kilogram of CO_{2} can be obtained by heating 1 kg of 90% pure magnesium carbonate.

- View Text Solution

Evaluate Yourself

1. By applying the knowledge of chemical classification, classify each of the following into elements, compounds or mixtures.
(i) Sugar
(ii) Sea water
(iii) Distilled water
(iv) Carbon dioxide
(v) Copper wire
(vi) Table salt
(vii) Silver plate
(viii) Naphthalene balls

D View Text Solution

2. Calculate the molar mass of the following.

Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$

D View Text Solution
3. Calculate the molar mass of the following.

Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$

D View Text Solution
4. Calculate the molar mass of the following.

Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$

- View Text Solution

5. Calculate the molar mass of the following.

Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$

- View Text Solution

6. Calculate the number of moles present in 9 g of ethane.

D View Text Solution

7. Calculate the number of molecules of oxygen gas that occupies a volume of 224 ml at 273 K and 3 atm pressure.

(D) View Text Solution

8. 0.456 g of a metal gives 0.606 g of its chloride. Calculate the equivalent mass of the metal.

- View Text Solution

9. Calculate the equivalent mass of potassium dichromate. The reduction half-reaction in acid medium is,
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

10. A Compound on analysis gave the following percentage composition $\mathrm{C}=54.55 \%, \mathrm{H}=9.09 \%, \mathrm{O}=36.36 \%$. Determine the empirical formula of the compound.

D View Text Solution

11. Experimental analysis of a compound containing the elements x, y, z on analysis gave the following data. $x=32 \%, y=24 \%, z=44$ $\%$. The relative number of atoms of x, y and z are 2,1 and 0.5 , respectively. (Molecular mass of the compound is 400 g) Find out.
i) The atomic masses of the element x, y, z.
ii) Empirical formula of the compound and
iii) Molecular formula of the compound.

D View Text Solution

12. The balanced equation for a reaction is given below
$2 x+3 y \rightarrow 4 l+m$
When 8 moles of x react with 15 moles of y , then
i) Which is the limiting reagent?
ii) Calculate the amount of products formed.
iii) Calculate the amount of excess reactant left at the end of the reaction.

D View Text Solution

13. Balance the following equation using oxidation number method

$$
\mathrm{Ag}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}
$$

D View Text Solution

Evaluation Choose The Best Answer

1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature The volume of gas left after cooling to room temperature is
A. 40 ml CO 2 gas
B. 40 ml CO 2 gas and $80 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ gas
C. 60 ml CO 2 gas and $60 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ gas
D. 120 ml CO 2 gas

Answer: a

D View Text Solution

2. An element X has the following isotopic composition ${ }^{200} X=90 \%,{ }^{199} X=8 \%$ and ${ }^{202} X=2 \%$. The weighted average atomic mass of the element X is closest to
A. 201 u
B. 202 u
C. 199 u
D. 200 u

Answer: d

D View Text Solution

3. Assertion : Two mole of glucose contains 12.044×10^{23} molecules of glucose

Reason : Total number of entities present in one mole of any substance is equal to 6.02×10^{22}
A. both assertion and reason are true and the reason is the correct explanation of assertion
B. both assertion and reason are true but reason is not the correct explanation of assertion
C. assertion is true but reason is false
D. both assertion and reason are false

Answer: c

D View Text Solution

4. Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of which element remains constant?
A. Carbon
B. oxygen
C. both carbon and oxygen
D. neither carbon nor oxygen

Answer: b

5. The equivalent mass of a trivalent metal element is $9 \mathrm{geq}{ }^{-1}$ the molar mass of its anhydrous oxide is
A. 102 g
B. 27 g
C. 270 g
D. 78 g

Answer: a

D View Text Solution

6. The number of water molecules in a drop of water weighing 0.018 g is
A. 6.022×10^{26}
B. 6.022×10^{23}
C. 6.022×10^{20}
D. 9.9×10^{22}

Answer: c

- View Text Solution

7.1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities) on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of impurity in the sample is
A. 0%
B. 4.4%
C. 16%
D. 8.4%

Answer: c

D View Text Solution

8. When 6.3 g of sodium bicarbonate is added to 30 g of acetic acid solution, the residual solution is found to weigh 33 g . The number of moles of carbon dioxide released in the reaction is
A. 3
B. 0.75
C. 0.075
D. 0.3

Answer: c

9. When 22.4 litres of $H_{2}(\mathrm{~g})$ is mixed with 11.2 litres of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at 273 K at 1 atm the moles of $\mathrm{HCl}(\mathrm{g})$, formed is equal to
A. 2 moles of HCl (g)
B. 0.5 moles of $\mathrm{HCl}(\mathrm{g})$
C. 1.5 moles of HCl (g)
D. 1 moles of HCl (g)

Answer: d

D View Text Solution

10. Hot concentrated sulphuric acid is a moderately strong oxidising agent. Which of the following reactions does not show oxidising behaviour?
A. $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}(4) \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
D. none of the above

Answer: c

D View Text Solution

11. Choose the disproportionation reaction among the following redox reactions.
A. $3 M g(s)+N_{2}(g) \rightarrow M g_{3} N_{2}(s)$
B. $\mathrm{P}_{4}(s)+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}(g)+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}(a q)$
C. $\mathrm{Cl}_{2}(g)+2 \mathrm{KI}(a q) \rightarrow 2 \mathrm{KCl}(a q)+I_{2}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Cr}(\mathrm{s})$

D View Text Solution

12. The equivalent mass of potassium permanganate in alkaline medium is

$$
\mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 e^{-} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}
$$

A. 31.6
B. 52.7
C. 79
D. None of these

Answer: b

13. Which one of the following represents 180 g of water?
A. 5 Moles of water
B. 90 moles of water
6.03
C.

-

D. 6.022×10^{24} molecules of water

Answer: d

- View Text Solution

14.7.5 g of a gas occupies a volume of 5.6 litres at $0^{\circ} C$ and 1 atm pressure. The gas is
A. NO
B. $\mathrm{N}_{2} \mathrm{O}$
C. CO
D. CO_{2}

Answer: a

D View Text Solution

15. Total number of electrons present in 1.7 g of ammonia is
A. 6.022×10^{23}
B. $\frac{6.022 \times 10^{22}}{1.7}$
C. $\frac{6.022 \times 10^{24}}{1.7}$
D. $\frac{6.022 \times 10^{23}}{1.7}$

Answer: a

16. The correct increasing order of the oxidation state of sulphur in the anions
$\mathrm{SO}_{4}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ is
A. $\mathrm{SO}_{3}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{4}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$

Answer: c

D View Text Solution

17. The equivalent mass of ferrous oxalate is
molar mass of ferrous oxalate
A. 1
B. $\frac{\text { molar mass of ferrous oxalate }}{2}$
C. $\frac{\text { molar mass of ferrous oxalate }}{3}$
D. none of these

Answer: c

- View Text Solution

18. If Avogadro number were changed from 6.022×10^{23} to
6.022×10^{20}, this would change
A. the ratio of chemical species to each other in a balanced equation
B. the ratio of elements to each other in a compound
C. the definition of mass in units of grams
D. the mass of one mole of carbon

D View Text Solution

19. Two 22.4 litre containers A and B contains 8 g of O_{2} and 8 g of $S O_{2}$ respectively at 273 K and 1 atm pressure, then
A. Number of molecules in A and B are same
B. Number of molecules in B is more than that in A
C. The ratio between the number of molecules in A to number of molecules in B is 2:1
D. Number of molecules in B is three times greater than the number of molecules in A.

Answer: c

20. What is the mass of precipitate formed when 50 ml of 8.5% solution of AgNO_{3} is mixed with 100 ml of 1.865% potassium chloride solution?
A. 3.59 g
B. 7 g
C. 14 g
D. 28 g

Answer: a

D View Text Solution

21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure ($25^{\circ} \mathrm{c}$ and 1 atm pressure) is 1.1 g . The
molar mass of the gas is
A. $66.25 \mathrm{~g} \mathrm{~mol}^{-1}$
B. $44 \mathrm{~g} \mathrm{~mol}^{-1}$
C. $24.5 \mathrm{~g} \mathrm{~mol}^{-1}$
D. $662.5 \mathrm{~g} \mathrm{~mol}^{-1}$

Answer: b

D View Text Solution

22. Which of the following contain same number of carbon atoms as in 6 g of carbon-12.
A. 7.5 g ethane
B. 8 g methane
C. both (a) and (b)
D. none of these

Answer: c

D View Text Solution

23. Which of the following compound(s) has /have percentage of carbon same as that in ethylene $\left(C_{2} H_{4}\right)$
A. propene
B. ethyne
C. benzene
D. ethane

Answer: a

24. Which of the following is/are true with respect to carbon - 12 .
A. relative atomic mass is 12 u
B. oxidation number of carbon is +4 in all its compounds.
C. 1 mole of carbon-12 contain $6.022 \times$ 10^{22} carbon atoms.
D. all of these

Answer: a

D View Text Solution

25. Which one of the following is used as a standard for atomic mass.
A. ${ }_{6} C^{12}$
B. ${ }_{7} C^{12}$
C. ${ }_{6} C^{13}$
D. ${ }_{6} C^{14}$

Answer: a

- View Text Solution

Evaluation Write Brief Answer To The Following Questions

1. The density of carbon dioxide is equal to $1.965 \mathrm{kgm}^{-3}$ at 273 K and 1 atm pressure. Calculate the molar mass of CO_{2}

- View Text Solution

2. Which contains the greatest number of moles of oxygen atoms
i) 1 mol of ethanol
ii) 1 mol of formic acid
iii) 1 mol of $\mathrm{H}_{2} \mathrm{O}$

D View Text Solution

3. Calculate the average atomic mass of naturally occurring magnesium using the following data

Isotope	Isotopic atomic mass	Abundance (\%)
Mg^{24}	23.99	78.99
Mg^{26}	24.99	10.00
Mg^{25}	25.98	11.01

- View Text Solution

4. In a reaction $x+y+z_{2}=x y z_{2}$ identify the Limiting reagent if any, in the following reaction mixtures.
(a) 200 atoms of $x+200$ atoms of $y+50$ molecules of z_{2}
(b) 1 mol of $x+1 \mathrm{~mol}$ of $y+3 \mathrm{~mol}$ of z_{2}
(c) 50 atoms of $x+25$ atoms of $y+50$ molecules of z_{2}
(d) 2.5 mol of $x+5 \mathrm{~mol}$ of $y+5 \mathrm{~mol}$ of z_{2}

D View Text Solution

5. Mass of one atom of an element is $6.645 \times 10^{-23} \mathrm{~g}$. How many moles of element are there in 0.320 kg .

D View Text Solution

6. What is the empirical formula of the following ?
(i) Fructose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ found in honey
(ii) Caffeine ($\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$) a substance found in tea and coffee.
7. The reaction between aluminium and ferric oxide can generate temperatures up to 3273 K and is used in welding metals. (Atomic mass of $A C=27 u$ Atomic mass of $0=16 u$)
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$, If, in this process, 324 g of aluminium is allowed to react with 1.12 kg of ferric oxide.
i) Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed.
ii) How much of the excess reagent is left at the end of the reaction?

D View Text Solution

8. How many moles of ethane is required to produce 44 g of
$\mathrm{CO}_{2(\mathrm{~g})}$ after combustion.
9. Hydrogen peroxide is an oxidising agent. It oxidises ferrous ion to ferric ion and reduced itself to water. Write a balanced equation.

- View Text Solution

10. Calculate the empirical and molecular formula of a compound containing 76.6% carbon, 6.38 \% hydrogen and rest oxygen its vapour density is 47 .

- View Text Solution

11. A Compound on analysis gave $\mathrm{Na}=14.31 \% \mathrm{~S}=9.97 \% \mathrm{H}=6.22 \%$ and $\mathrm{O}=69.5 \%$ calculate the molecular formula of the compound if all the hydrogen in the compound is present in combination with
oxygen as water of crystallization. (molecular mass of the compound is 322).

D View Text Solution

12. Balance the following equations by oxidation number method $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

13. Balance the following equations by oxidation number method
$\mathrm{KMnO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}$
14. Balance the following equations by oxidation number method $\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

15. Balance the following equations by oxidation number method $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

D View Text Solution

16. Balance the following equations by ion electron method.
$\mathrm{KMnO}_{4}+\mathrm{SnCl}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{SnCl}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}$
17. Balance the following equations by ion electron method.

$$
\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2} \text { (in acid medium) }
$$

- View Text Solution

18. Balance the following equations by ion electron method.
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na} a_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\mathrm{NaI}$ (in acid medium)

- View Text Solution

19. Balance the following equations by ion electron method.
$\mathrm{Zn}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NO}$

- View Text Solution

