

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

PHYSICAL AND CHEMICAL EQUILIBRIUM

Solved Problems

1. One mole of H_2 and one mole of I_2 are allowed to attain equilibrium. If the equilibrium mixture contains 0.4 mole of HI. Calculate the equilibrium constant.

View Text Solution

2. The equilibrium concentrations of NH_3, N_2 and H_2 are $1.8 \times 10^{-2}M, 1.2 \times 10^{-2}M$ and $3 \times 10^{-2}M$ are respectively.

Evaluate Yourself

1. Consider the following reaction $Fe^{3+}(aq) + SCN^{-}(aq) \leftrightarrow [Fe(SCN)]^{2+}(aq)$ A solution is made with initial Fe^{3+} , SCN^{-} concentration of $1 \times 10^{-3}M$ and $8 \times 10^{-4}M$ respectively. At equilibrium $[Fe(SCN)]^{2+}$ concentration is $2 \times 10^{-4}M$. Calculate the value of equilibrium constant.

View Text Solution

2. The atmospheric oxidation of NO $2NO(g) + O_2(g) \leftrightarrow 2NO_2(g)$ was studied with initial pressure of 1 atm of NO and 1 atm of O_2 . At equilibrium, partial pressure of oxygen is 0.52 atm calculate K_p of the reaction.

3. The following water gas shift reaction is an important industrial process for the production of hydrogen gas.

 $CO(g) + H_2O(g) \leftrightarrow CO_2(g) + H_2(g)$

At a given temperature $K_p = 2.7$. If 0.13 mol of CO, 0.56 mol of water, 0.78 mol of CO_2 and 0.28 mol of H_2 are introduced into a 2 L flask, and find out in which direction must the reaction proceed reach equilibrium.

4. 1 mol of PCl_5 , kept in a closed container of volume $1dm^3$ and was allowed to attain equilibrium at 423 K. Calculate the equilibrium composition of reaction mixture.

View Text Solution

5. The equilibrium constant for the following reaction is 0.15 at 298K and

1 atm pressure.

 $N_2O_4(g) \leftrightarrow 2NO_2(g)$,

 $riangle H_f^2 = 57.32 K J \mathrm{mol}^{-1}$

The reaction conditions are altered as follows.

1 atm, Calculate the equilibrium constant.

A. 20

 $\text{B.}\,0.2\times10^{-1}$

 $\mathsf{C}.\,0.05$

D. none of these

Answer: A

View Text Solution

2. At a given temperature and pressure, the equilibrium constant values for the equilibria

The relation between K_1 and K_2 is

A.
$$K_1 = rac{1}{\sqrt{K_2}}$$

B. $K_2 = {K_1^{-rac{1}{2}}}$
C. $K_1^2 = 2K_2$
D. $rac{K_1}{2} = K_2$

Answer: B

View Text Solution

3. The equilibrium constant for a reaction at room temperature is K1 and

that at 700 K is K2. If K1>K2, then

A. The forward reaction is exothermic

B. The forward reaction is endothermic

C. The reaction does not attain equilibrium

D. The reverse reaction is exothermic

Answer: A

View Text Solution

4. The formation of ammonia from $N_2(g)$ and $H_2(g)$ is a reversible reaction

 $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + ext{ Heat}$

What is the effect of increase of temperature on this equilibrium reaction

A. equilibrium is unaltered

B. formation of ammonia is favoured

C. equilibrium is shifted to the left

D. reaction rate does not change

Answer: C

5. Solubility of carbon dioxide gas in cold water can increased by

A. increase in pressure

B. decrease in pressure

C. increase in volume

D. none of these

Answer: A

View Text Solution

6. Which one of the following in incorrect statement ?

A. for a system at equilibrium, Q is always less than the equilibrium

constant

- B. equilibrium can be attained from either side of the reaction
- C. presence of catalyst affects both the forward reaction and reverse

reaction to the same extent

D. Equilibrium constant varied with temperature

Answer: A

View Text Solution

7. K_1 and K_2 are the equilibrium constants for the reactions respectively.

$$egin{aligned} N_2(g) &+ O_2(g) & \stackrel{k_1}{\longleftrightarrow} 2NO(g) \ 2NO(g) &+ O_2(g) & \stackrel{K_2}{\longleftrightarrow} 2NO_2(g) \end{aligned}$$
 What is the equilibrium constant for the reaction $NO_2(g) & \leftrightarrow rac{1}{2}N_2(g) + O_2(g) \end{aligned}$

A.
$$rac{1}{\sqrt{K_1K_2}}$$

B. $(K_1 = K_2)^{rac{1}{2}}$
C. $rac{1}{2K_1K_2}$
D. $\left(rac{1}{K_1K_2}
ight)^{rac{3}{2}}$

Answer: A

View Text Solution

8. In the equilibrium, $2A(g) \leftrightarrow 2B(g) + C_2(g)$ the equilibrium concentrations of A, B and C_2 at 400 K are $1 \times 10^{-4}M$, $2.0 \times 10^{-3}M$, $1.5 \times 10^{-4}M$ respectively. The value of K_C for the equilibrium at 400 K is

A. 0.06

 $\mathsf{B.}\,0.09$

 $\mathsf{C}.\,0.62$

D. $3 imes 10^{-2}$

Answer: A

9. An equilibrium constant of 3.2×10^{-6} for a reaction means, the equilibrium is

A. largely towards forward direction

B. largely towards reverse direction

C. never established

D. none of these

Answer: B

View Text Solution

10. $rac{K_C}{K_P}$ for the reaction, $N_2(g)+3H_2(g)\leftrightarrow 2NH_3(g)$ is

A.
$$\frac{1}{RT}$$

B. \sqrt{RT}

 $\mathsf{C}.\,RT$

D. $\left(RT\right) ^{2}$

Answer: D

View Text Solution

11. For the raction $AB(g) \leftrightarrow A(g) + B(g)$, at equilibrium, AB is 20% dissociated at a total pressure of P, The equilibrium constant K_p is related to the total pressure by the expression

A. $P=24K_p$

 $\mathsf{B}.\,P=8K_p$

 $\mathsf{C.}\,24P = K_p$

D. none of these

Answer: A

12. In which of the following equilibrium, K_p and K_c are not equal?

A.
$$2NO(g) \leftrightarrow N_2(g) + O_2(g)$$

B. $SO_2(g) + NO_2 \leftrightarrow SO_3(g) + NO(g)$

$$\mathsf{C}.\, H_2(g) + I_2(g) \leftrightarrow 2HI(g)$$

D.
$$PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$$

Answer: D

View Text Solution

13. If x is the fraction of PCl_5 dissociated at equilibrium in the reaction

 $PCl_5 \leftrightarrow PCl_3 + Cl_2$

then starting with 0.5 mole of PCl_5 , the total number of moles of reactants and products at equilibrium in

A. 0.5 - xB. x + 0.5C. 2x + 0.5

 $\mathsf{D}.\,x-1$

Answer: B

View Text Solution

14. The values of K_{P_1} and K_{P_2} for the reactions

 $X \leftrightarrow Y + Z$

 $A \leftrightarrow 2B$ are in the ratio 9:1 if degree of dissociation and initial concentration of X and A be equal then total pressure at equilibrium P_1 and P_2 are in the ratio

A. 36:1

B.1:1

C.3:1

D.1:9

Answer: A

View Text Solution

15. In the reaction,

 $Fe(OH)_3(s) \leftrightarrow Fe^{3+}(aq) + 3OH^{-}(aq),$

if the concentration of OH^- ions is decreased by 1/4 times, then the equilibrium concentration of Fe^{3+} will

A. not changed

B. also decreased by 1/4 times

C. increase by 4 times

D. increase by 64 times

Answer: D

View Text Solution

16. Consider the reaction where $K_P=0.5$ at a particular temperature

 $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$

if the three gases are mixed in a container so that the partial pressure of each gas is initially I atm, then which one of the following is true

A. more PCl_3 will be produced

B. more Cl_2 will be produced

C. more PCl_5 will be produced

D. none of these

Answer: C

View Text Solution

17. Equimolar concentrations of H_2 and I_2 are heated to equilibrium in a 1 litre flask. What percentage of initial concentration of H_2 has reacted at equilibrium if rate constant for both horward and reverse reactions are equal

A. 33~%

 $\mathsf{B.}\,66~\%$

C. 35 %

D. 16.5~%

Answer: A

View Text Solution

18. In a chemical equilibrium, the rate constant for the forward reaction is 2.5×10^2 and the equilibrium constant is 50. The rate constant for the reverse reaction is,

A. 11.5

B. 5

 ${\rm C.}\,2\times10^2$

D. $2 imes 10^{-3}$

Answer: B

View Text Solution

19. Which of the following is not a general characteristic of equilibrium involving physical process

A. Equilibrium is possible only in a closed system at a given

temperature

B. The opposing processes occur at the same rate and there is a

dynamic but stable condition

C. All the physical processes stop at equilibrium

D. All measurable properties of the system remains constant

Answer: C

20. For the formation of Two moles of $SO_3(g)$ from SO_2 and O_2 , the equilibrium constant is K_1 . The equilibrium constant for the dissociation of one mole of SO_3 into SO_2 and O_2 is

A.
$$1/K_1$$

B. K^2 _ (1)
C. $\left(\frac{1}{K_1}\right)^{1/2}$

D. (K_(1))/(2)`

Answer: C

View Text Solution

21. Match the equilibria with the corresponding conditions,

- i) Liquid \leftrightarrow Vapour
- ii) Solid \leftrightarrow Liquid
- iii) Solid \leftrightarrow Vapour
- iv) solute (s) \leftrightarrow Solute (Solution)
- 1) melting point
- 2) Saturated solution
- 3) Boiling point
- 4) Sublimation point
- 5) Unsaturated solution

i i	(i)	(ii)	(iii)	(iv)
(a)	1	2	3	4
(b)	3	1	4	2
(c)	2	1	3	4
(đ)	3	2	4	5

View Text Solution

22. Consider the following reversible reaction at equilibrium, $A + B \leftrightarrow C$, If the concentration of the reactants A and B are doubled, then the equilibrium constant will

A. be doubled

B. become one fourth

C. be halved

D. remain the same

Answer: D

View Text Solution

23.

 $[Co(H_2O)_6]^{2+}(aq)(\text{pink}) + 4Cl^-(aq) \leftrightarrow [CoCl_4]^{2-}(aq)(\text{blue}) + 6H_2O(l)$ In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in colour. On the basis of this information, which one of hte following is true?

- A. riangle H > 0 for the forward reaction
- B. riangle H = 0 for the reverse reaction
- C. riangle H < 0 for the forward reaction
- D. Sign of the $\ riangle H$ cannot be predicted based on this information.

Answer: A

View Text Solution

24. The equilibrium constants of the following reactions are :

The equilibrium constant (K) for the reaction ,

$$2NH_3+rac{5}{2}O_2 \mathop{\longleftrightarrow}\limits^k 2NO+3H_2O$$
, will be

A.
$$\frac{K_2^3 K_3}{K_1}$$

B. $\frac{K_1 K_3^3}{K_2}$
C. $\frac{K_2 K_3^3}{K_1}$
D. $\frac{K_2 K_3}{K_1}$

Answer: C

View Text Solution

25. A 20 litre container at 400 K contains $CO_2(g)$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_2 attains its maximum value will be :

Given that : $SrCO_2(S) \leftrightarrow SrO(S) + CO_2(g)$

 $K_p=1.6\,
m atm$

A. 2 litre

B. 5 litre

C. 10 litre

D. 4 litre

Answer: B

O View Text Solution

Evaluation

1. For the reaction, $A_2(g)+B_2(g)\leftrightarrow 2AB(g)\colon riangle H$ is -ve.

the following molecular scenes represent different reaction mixture (A-

green, B-blue)

Calculate the equilibrium constant K_P and (K_C) .

2. For the reaction, $A_2(g)+B_2(g)\leftrightarrow 2AB(g)\colon riangle H$ is -ve.

the following molecular scenes represent different reaction mixture (A-green, B-blue)

For the reaction mixture represented by scene (x), (y) the reaction proceed in which directions?

3. For the reaction, $A_2(g)+B_2(g)\leftrightarrow 2AB(g)\colon riangle H$ is -ve.

the following molecular scenes represent different reaction mixture (A-green, B-blue)

What is the effect of increase in pressure for the mixture at equilibrium.

View Text Solution

4. Write a balanced chemical equation for a equilibrium reaction for which the equilibrium constant is given by expression

$$K_C = rac{[NH_3]^4 [O_2]^5}{[NO]^4 [H_2 O]^6}$$

View Text Solution

5. One mole of PCl_5 is heated in one litre closed container. If 0.6 mole of the chlorine is found at equilibrium, calculate the value of equilibrium constant.

6. For the reaction $SrCO_3(S) \leftrightarrow SrO(s) + CO_2(g)$

The value of equilibrium constant $K_p = 2.2 imes 10^{-4}$ at 1002 K. Calculate K_C for the reaction.

View Text Solution

7. To study the decomposition of hydrogen iodide, a student fills an evacuated 3 litre flask with 0.3 mol of HI gas and allows the reaction to proceed at $500^{\circ}C$. At equilibrium he found the concentration of HI which is equal to 0.05M. Calculate K_C and K_P .

View Text Solution

8. Oxidation of nitrogen monoxide was studied at $200^{\circ}C$ with initial pressures of 1 atm NO and 1 atm of O_2 . At equilibrium partial pressure of oxygen is found to be 0.52 atm calculate K_P value.

9. 1 mole of CH_4 , 1 mole of CS_2 and 2 mol of H_2S are 2 mol of H_2 are mixed in a 500 ml flask. The equilibrium constant for the reaction $K_C = 4 \times 10^{-2} \text{mol}^2 \text{lit}^{-2}$. In which direction will the reaction proceed to reach equilibrium?

View Text Solution

10. At particular temperature $K_C=4 imes 10^{-2}$ for the reaction $H_2S(g)\leftrightarrow H_2(g)+rac{1}{2}S_2(g)$

Calculate K_C for each of the following reaction

 $2H_2S(g)\leftrightarrow 2H_2(g)+S_2(g)$

View Text Solution

11. At particular temperature $K_C = 4 imes 10^{-2}$ for the reaction

$$H_2S(g) \leftrightarrow H_2(g) + rac{1}{2}S_2(g)$$

Calculate K_C for each of the following reaction

$$3H_2S(g) \leftrightarrow 3H_2(g) + rac{3}{2}S_2(g)$$

View Text Solution

12. 28g of Nitrogen and 6g of hydrogen were mixed in a 1 litre closed container. At equilibrium 17g NH_3 was produced. Calculate the weight of nitrogen, hydrogen at equilibrium.

View Text Solution

13. The equilibrium for the dissociation of XY_2 is given is,

 $2XY_2(g) \leftrightarrow 2XY(g) + Y_2(g)$

If the degree of dissociation x is so small compared to one. Show that $2K_P = PX^3$ where P is the total pressure and K_P is the dissociation equilibrium constant of XY_2 .

View Text Solution

14. A sealed container was filled with 1 mol of $A_2(g)$, 1 mol $B_2(g)$ at 800 K and total pressure 1.00 bar. Calculate the amounts of the components in the mixture at equilibrium given that K= 1 for the reaction $A_2(g) + B_2(g) \leftrightarrow 2AB(g)$.

View Text Solution

15. The equilibrium constant K_P for the reaction

 $N_2(g)+3H_2(g)\leftrightarrow 2NH_3(g)$ is $8.19 imes 10^2$ at 298K and $4.6 imes 10^{-1}$ at 498K. Calculate $riangle H^0$ for the reaction.

View Text Solution

16. The partial pressure of carbon dioxide in the reaction

 $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$ is 1.017×10^{-3} atm at $500^{\circ}C$. Calculate K_P at $600^{\circ}C$ for the reaction. $\triangle H$ for the reaction is 181KJmol⁻¹ and does not change in the given range of temperature.

