©゙doubtnut

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

PHYSICAL AND CHEMICAL EQUILIBRIUM

Solved Problems

1. One mole of H_{2} and one mole of I_{2} are allowed to attain equilibrium. If the equilibrium mixture contains 0.4 mole of HI. Calculate the equilibrium constant.

- View Text Solution

2. The equilibrium concentrations of $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and H_{2} are $1.8 \times 10^{-2} M, 1.2 \times 10^{-2} M$ and $3 \times 10^{-2} M \quad$ are respectively.

Calculate the equilibrium constant for the formation of NH_{3} from N_{2} and H_{2}.

- View Text Solution

3. The equilibrium constant at 298 K for a reactions is 100 .
$A+B \leftrightarrow C+D$
If the initial concentration of all the four species is 1 M , the equilibrium concentration of D (in mol lit^{-1}) will be

- View Text Solution

4.

For
an
equilibrium
reaction
$K_{p}=0.0260$ at $25^{\circ} C \triangle H=32.4 K \mathrm{Jmol}^{-1}$, calculate K_{p} at $37^{\circ} \mathrm{C}$.

- View Text Solution

$F e^{3+}(a q)+S C N^{-}(a q) \leftrightarrow[F e(S C N)]^{2+}(a q)$
A solution is made with initial $\mathrm{Fe}^{3+}, \mathrm{SCN}^{-}$concentration of $1 \times 10^{-3} M$ and $8 \times 10^{-4} M \quad$ respectively. At equilibrium $[\mathrm{Fe}(S C N)]^{2+}$ concentration is $2 \times 10^{-4} \mathrm{M}$. Calculate the value of equilibrium constant.

- View Text Solution

2. The atmospheric oxidation of NO
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ was studied with initial pressure of 1 atm of NO and 1 atm of O_{2}. At equilibrium, partial pressure of oxygen is 0.52 atm calculate K_{p} of the reaction.

- View Text Solution

3. The following water gas shift reaction is an important industrial process for the production of hydrogen gas.

$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

At a given temperature $K_{p}=2.7$. If 0.13 mol of CO, 0.56 mol of water, 0.78 mol of CO_{2} and 0.28 mol of H_{2} are introduced into a 2 L flask, and find out in which direction must the reaction proceed reach equilibrium.

- View Text Solution

4.1 mol of PCl_{5}, kept in a closed container of volume $1 d \mathrm{~m}^{3}$ and was allowed to attain equilibrium at 423 K . Calculate the equilibrium composition of reaction mixture.

- View Text Solution

5. The equilibrium constant for the following reaction is 0.15 at 298 K and 1 atm pressure.

$$
\begin{aligned}
& N_{2} O_{4}(g) \leftrightarrow 2 N O_{2}(g) \\
& \triangle H_{f}^{2}=57.32 K_{\mathrm{Kmol}^{-1}}
\end{aligned}
$$

The reaction conditions are altered as follows.
(a) The reaction temperature is altered to $100^{\circ} C$ keeping the pressure at 1 atm, Calculate the equilibrium constant.

- View Text Solution

Evaluation Mcqs

1. If K_{b} and K_{f} for a reversible reactions are 0.8×10^{-5} and 1.6×10^{-4} respectively, the value of the equilibrium constant is,
A. 20
B. 0.2×10^{-1}
C. 0.05
D. none of these

Answer: A

2. At a given temperature and pressure, the equilibrium constant values for the equilibria
$3 A_{2}+B_{2}+2 C \stackrel{K_{1}}{\longleftrightarrow} 2 A_{3} B C$ and
$A_{3}+B C \stackrel{K_{2}}{\longleftrightarrow} \frac{3}{2}\left[A_{2}\right]+\frac{1}{2} B_{2} C$
The relation between K_{1} and K_{2} is
A. $K_{1}=\frac{1}{\sqrt{K_{2}}}$
B. $K_{2}=K_{1}^{-\frac{1}{2}}$
C. $K_{1}^{2}=2 K_{2}$
D. $\frac{K_{1}}{2}=K_{2}$

Answer: B

- View Text Solution

3. The equilibrium constant for a reaction at room temperature is K 1 and that at 700 K is K 2 . If $K 1>K 2$, then
A. The forward reaction is exothermic
B. The forward reaction is endothermic
C. The reaction does not attain equilibrium
D. The reverse reaction is exothermic

Answer: A

- View Text Solution

4. The formation of ammonia from $N_{2}(g)$ and $H_{2}(g)$ is a reversible reaction
$N_{2}(g)+3 H_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)+$ Heat
What is the effect of increase of temperature on this equilibrium reaction
A. equilibrium is unaltered
B. formation of ammonia is favoured
C. equilibrium is shifted to the left
D. reaction rate does not change

Answer: C

- View Text Solution

5. Solubility of carbon dioxide gas in cold water can increased by
A. increase in pressure
B. decrease in pressure
C. increase in volume
D. none of these

Answer: A

(D)
 View Text Solution

6. Which one of the following in incorrect statement ?
A. for a system at equilibrium, Q is always less than the equilibrium constant
B. equilibrium can be attained from either side of the reaction
C. presence of catalyst affects both the forward reaction and reverse reaction to the same extent
D. Equilibrium constant varied with temperature

Answer: A

D View Text Solution

7. K_{1} and K_{2} are the equilibrium constants for the reactions respectively.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \stackrel{k_{1}}{\longleftrightarrow} 2 \mathrm{NO}(\mathrm{~g})
$$

$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \stackrel{K_{2}}{\longleftrightarrow} 2 \mathrm{NO}_{2}(\mathrm{~g})$
What is the equilibrium constant for the reaction

$$
N O_{2}(g) \leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g)
$$

A. $\frac{1}{\sqrt{K_{1} K_{2}}}$
B. $\left(K_{1}=K_{2}\right)^{\frac{1}{2}}$
C. $\frac{1}{2 K_{1} K_{2}}$
D. $\left(\frac{1}{K_{1} K_{2}}\right)^{\frac{3}{2}}$

Answer: A

- View Text Solution

8. In the equilibrium, $2 A(g) \leftrightarrow 2 B(g)+C_{2}(g)$
the equilibrium concentrations of A, B and C_{2} at 400 K are $1 \times 10^{-4} M, 2.0 \times 10^{-3} M, 1.5 \times 10^{-4} M$ respectively. The value of K_{C} for the equilibrium at 400 K is
A. 0.06
B. 0.09
C. 0.62
D. 3×10^{-2}

Answer: A

- View Text Solution

9. An equilibrium constant of 3.2×10^{-6} for a reaction means, the equilibrium is
A. largely towards forward direction
B. largely towards reverse direction
C. never established
D. none of these

Answer: B

D View Text Solution

10. $\frac{K_{C}}{K_{P}}$ for the reaction, $N_{2}(g)+3 H_{2}(g) \leftrightarrow 2 N H_{3}(g)$ is
A. $\frac{1}{R T}$
B. $\sqrt{R T}$
C. $R T$
D. $(R T)^{2}$

Answer: D

- View Text Solution

11. For the raction $A B(g) \leftrightarrow A(g)+B(g)$, at equilibrium, AB is 20% dissociated at a total pressure of P , The equilibrium constant K_{p} is related to the total pressure by the expression
A. $P=24 K_{p}$
B. $P=8 K_{p}$
C. $24 P=K_{p}$
D. none of these

- View Text Solution

12. In which of the following equilibrium, K_{p} and K_{c} are not equal?
A. $2 N O(g) \leftrightarrow N_{2}(g)+O_{2}(g)$
B. ${S O_{2}}_{2}(g)+\mathrm{NO}_{2} \leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$
C. $H_{2}(g)+I_{2}(g) \leftrightarrow 2 H I(g)$
D. $P C l_{5}(g) \leftrightarrow P C l_{3}(g)+C l_{2}(g)$

Answer: D

D View Text Solution

13. If x is the fraction of PCl_{5} dissociated at equilibrium in the reaction

$$
P C l_{5} \leftrightarrow P C l_{3}+C l_{2}
$$

then starting with 0.5 mole of $P C l_{5}$, the total number of moles of reactants and products at equilibrium in
A. $0.5-x$
B. $x+0.5$
C. $2 x+0.5$
D. $x-1$

Answer: B

D View Text Solution

14. The values of $K_{P_{1}}$ and $K_{P_{2}}$ for the reactions
$X \leftrightarrow Y+Z$
$A \leftrightarrow 2 B$ are in the ratio $9: 1$ if degree of dissociation and initial concentration of X and A be equal then total pressure at equilibrium P_{1} and P_{2} are in the ratio
A. $36: 1$
B. $1: 1$
C. 3:1
D. 1: 9

Answer: A

- View Text Solution

15. In the reaction,
$\mathrm{Fe}(\mathrm{OH})_{3}(s) \leftrightarrow \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)$,
if the concentration of OH^{-}ions is decreased by $1 / 4$ times, then the equilibrium concentration of $F e^{3+}$ will
A. not changed
B. also decreased by $1 / 4$ times
C. increase by 4 times
D. increase by 64 times

Answer: D

- View Text Solution

16. Consider the reaction where $K_{P}=0.5$ at a particular temperature

$$
P C l_{5}(g) \leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

if the three gases are mixed in a container so that the partial pressure of each gas is initially I atm, then which one of the following is true
A. more PCl_{3} will be produced
B. more $C l_{2}$ will be produced
C. more $P C l_{5}$ will be produced
D. none of these

Answer: C

- View Text Solution

17. Equimolar concentrations of H_{2} and I_{2} are heated to equilibrium in a 1 litre flask. What percentage of initial concentration of H_{2} has reacted at equilibrium if rate constant for both horward and reverse reactions are equal
A. 33%
B. 66%
C. 35%
D. 16.5%

Answer: A

- View Text Solution

18. In a chemical equilibrium, the rate constant for the forward reaction is 2.5×10^{2} and the equilibrium constant is 50 . The rate constant for the reverse reaction is,
A. 11.5
B. 5
C. 2×10^{2}
D. 2×10^{-3}

Answer: B

- View Text Solution

19. Which of the following is not a general characteristic of equilibrium involving physical process
A. Equilibrium is possible only in a closed system at a given temperature
B. The opposing processes occur at the same rate and there is a dynamic but stable condition
C. All the physical processes stop at equilibrium
D. All measurable properties of the system remains constant

Answer: C

- View Text Solution

20. For the formation of Two moles of $\mathrm{SO}_{3}(\mathrm{~g})$ from SO_{2} and O_{2}, the equilibrium constant is K_{1}. The equilibrium constant for the dissociation of one mole of SO_{3} into SO_{2} and O_{2} is
A. $1 / K_{1}$
B. $K^{2}{ }_{-}(1)$
C. $\left(\frac{1}{K_{1}}\right)^{1 / 2}$
D. $\left(K_{-}(1)\right) /(2)^{\prime}$

Answer: C

21. Match the equilibria with the corresponding conditions,
i) Liquid \leftrightarrow Vapour
ii) Solid \leftrightarrow Liquid
iii) Solid \leftrightarrow Vapour
iv) solute (s) \leftrightarrow Solute (Solution)
1) melting point
2) Saturated solution
3) Boiling point
4) Sublimation point
5) Unsaturated solution

	(i)	(ii)	(iii)	(iv)
(a)	1	2	3	4
(b)	3	1	4	2
(c)	2	1	3	4
(d)	3	2	4	5

22. Consider the following reversible reaction at equilibrium, $A+B \leftrightarrow C$, If the concentration of the reactants A and B are doubled, then the equilibrium constant will
A. be doubled
B. become one fourth
C. be halved
D. remain the same

Answer: D

D View Text Solution

23.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(a q)(\text { pink })+4 \mathrm{Cl}^{-}(\mathrm{aq}) \leftrightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}(a q)(\text { blue })+6 \mathrm{H}_{2} \mathrm{O}(l)
$$ In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in

colour. On the basis of this information, which one of hte following is true?
A. $\Delta H>0$ for the forward reaction
B. $\triangle H=0$ for the reverse reaction
C. $\triangle H<0$ for the forward reaction
D. Sign of the $\triangle H$ cannot be predicted based on this information.

Answer: A

D View Text Solution

24. The equilibrium constants of the following reactions are :

$$
N_{2}+3 H_{2} \leftrightarrow 2 N H_{3} \quad, \quad K_{1}
$$

$$
N_{2}+O_{2} \leftrightarrow 2 N O \quad, \quad K_{2}
$$

$$
H+\frac{1}{2} O_{2} \leftrightarrow H_{2} O \quad, \quad K_{3}
$$

The equilibrium constant (K) for the reaction ,
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{k}{\longleftrightarrow} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be
A. $\frac{K_{2}^{3} K_{3}}{K_{1}}$
B. $\frac{K_{1} K_{3}^{3}}{K_{2}}$
C. $\frac{K_{2} K_{3}^{3}}{K_{1}}$
D. $\frac{K_{2} K_{3}}{K_{1}}$

Answer: C

- View Text Solution

25. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value will be :

Given that: $\mathrm{SrCO}_{2}(\mathrm{~S}) \leftrightarrow \mathrm{SrO}(\mathrm{S})+\mathrm{CO}_{2}(g)$
$K_{p}=1.6 \mathrm{~atm}$
A. 2 litre
B. 5 litre
C. 10 litre
D. 4 litre

Answer: B

- View Text Solution

Evaluation

1. For the reaction, $A_{2}(g)+B_{2}(g) \leftrightarrow 2 A B(g): \triangle H$ is -ve. the following molecular scenes represent different reaction mixture (Agreen, B-blue)

equiliornum

Calculate the equilibrium constant K_{P} and (K_{C}).

- View Text Solution

2. For the reaction, $A_{2}(g)+B_{2}(g) \leftrightarrow 2 A B(g): \triangle H$ is -ve.
the following molecular scenes represent different reaction mixture (Agreen, B-blue)

For the reaction mixture represented by scene (x), (y) the reaction proceed in which directions?

- View Text Solution

3. For the reaction, $A_{2}(g)+B_{2}(g) \leftrightarrow 2 A B(g): \triangle H$ is -ve.
the following molecular scenes represent different reaction mixture (Agreen, B-blue)

What is the effect of increase in pressure for the mixture at equilibrium.

- View Text Solution

4. Write a balanced chemical equation for a equilibrium reaction for which the equilibrium constant is given by expression
$K_{C}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$.

- View Text Solution

5. One mole of PCl_{5} is heated in one litre closed container. If 0.6 mole of the chlorine is found at equilibrium, calculate the vlaue of equilibrium constant.
6. For the reaction $\mathrm{SrCO}_{3}(\mathrm{~S}) \leftrightarrow \mathrm{SrO}(s)+\mathrm{CO}_{2}(g)$ The value of equilibrium constant $K_{p}=2.2 \times 10^{-4}$ at 1002 K . Calculate K_{C} for the reaction.

- View Text Solution

7. To study the decomposition of hydrogen iodide, a student fills an evacuated 3 litre flask with 0.3 mol of HI gas and allows the reaction to proceed at $500^{\circ} \mathrm{C}$. At equilibrium he found the concentration of HI which is equal to $0.05 M$. Calculate K_{C} and K_{P}.

- View Text Solution

8. Oxidation of nitrogen monoxide was studied at $200^{\circ} \mathrm{C}$ with initial pressures of 1 atm NO and 1 atm of O_{2}. At equilibrium partial pressure of oxygen is found to be 0.52 atm calculate K_{P} value.
9. 1 mole of CH_{4}, 1 mole of $C S_{2}$ and 2 mol of $H_{2} S$ are 2 mol of H_{2} are mixed in a 500 ml flask. The equilibrium constant for the reaction $K_{C}=4 \times 10^{-2} \mathrm{~mol}^{2} \mathrm{lit}^{-2}$. In which direction will the reaction proceed to reach equilibrium?

- View Text Solution

10. At particular temperature $K_{C}=4 \times 10^{-2}$ for the reaction
$H_{2} S(g) \leftrightarrow H_{2}(g)+\frac{1}{2} S_{2}(g)$
Calculate K_{C} for each of the following reaction
$2 H_{2} S(g) \leftrightarrow 2 H_{2}(g)+S_{2}(g)$

- View Text Solution

11. At particular temperature $K_{C}=4 \times 10^{-2}$ for the reaction
$H_{2} S(g) \leftrightarrow H_{2}(g)+\frac{1}{2} S_{2}(g)$

Calculate K_{C} for each of the following reaction
$3 H_{2} S(g) \leftrightarrow 3 H_{2}(g)+\frac{3}{2} S_{2}(g)$

- View Text Solution

12. 28 g of Nitrogen and 6 g of hydrogen were mixed in a 1 litre closed container. At equilibrium $17 \mathrm{~g} \mathrm{NH}_{3}$ was produced. Calculate the weight of nitrogen, hydrogen at equilibrium.

- View Text Solution

13. The equilibrium for the dissociation of $X Y_{2}$ is given is,
$2 X Y_{2}(g) \leftrightarrow 2 X Y(g)+Y_{2}(g)$
If the degree of dissociation x is so small compared to one. Show that $2 K_{P}=P X^{3}$ where P is the total pressure and K_{P} is the dissociation equilibrium constant of $X Y_{2}$.

- View Text Solution

14. A sealed container was filled with 1 mol of $A_{2}(g), 1 \mathrm{~mol} B_{2}(g)$ at 800 K and total pressure 1.00 bar. Calculate the amounts of the components in the mixture at equilibrium given that $\mathrm{K}=1$ for the reaction $A_{2}(g)+B_{2}(g) \leftrightarrow 2 A B(g)$.

- View Text Solution

15. The equilibrium constant K_{P} for the reaction
$N_{2}(g)+3 H_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)$ is 8.19×10^{2} at 298 K and 4.6×10^{-1} at 498K. Calculate $\triangle H^{0}$ for the reaction.

- View Text Solution

16. The partial pressure of carbon dioxide in the reaction
$\mathrm{CaCO}_{3}(s) \leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is 1.017×10^{-3} atm at $500^{\circ} \mathrm{C}$.
Calculate K_{P} at $600^{\circ} C$ for the reaction. $\triangle H$ for the reaction is $181 \mathrm{~K} \mathrm{~mol}^{-1}$ and does not change in the given range of temperature.
\square
