© 'doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

THERMODYNAMICS

Example

1. From the following data at constant volume for combustion of benzene, calculate the heat of this reaction at constant pressure condition.
$\mathrm{C}_{6} \mathrm{H}_{6(1)}+71 / 2 \mathrm{O}_{2(g)} \rightarrow 6 \mathrm{CO}_{2(g)}+13 \mathrm{H}_{2} \mathrm{O}_{(l)}$
2. Calculate the enthalpy of combustion of ethylene at 300 K at constant pressure if its enthalpy of combustion at constant volume is $-1406 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

3. (a) The measured heats of neutralization of acetic acid, formic acid, hydrocyanic acid, and hydrogen sulphide are 13.20, 13.40, 2.90 and 3.80 KCal per g.equiv. respectively. Arrange these acids in a decreasing order of strength.
(b) Heat of neutralization of formic acid by $\mathrm{NH}_{4} \mathrm{OH}$ is 11.9 KCal per g.equiv. What is the heat of ionization of $\mathrm{NH}_{4} \mathrm{OH}$?

- View Text Solution

Questions A Choose The Correct Answer

1. Which of the following is not a statement ?
A. q
B. $q+w$
C. ΔH
D. $V+P V$

Answer:

D Watch Video Solution

2. Which one of the following is not an extensive property ?
A. volume
B. density
C. refractive index
D. molar volume

Answer:

3. Which of the following is not an endothermic reaction?
A. melting of ice
B. combustion reactions
C. hydrolysis
D. boiling of water

Answer:

- Watch Video Solution

4. Which of the following process is reversible ?
A. Diffusion
B. melting
C. neutralization
D. combustion

Answer:

- Watch Video Solution

5. In which process, work is maximum?
A. reversible
B. irreversible
C. exothermic
D. cyclic

Answer:

- Watch Video Solution

1. Translational energy of molecules is a part of \qquad energy of the system.

- Watch Video Solution

2. Specific heat of a liquid system is \qquad property.

- Watch Video Solution

3. Work done in the reversible expansion is

- Watch Video Solution

4. Combustion is an \qquad process.
5. Heat of neutralisation of a strong acid is \qquad than that of a weak acid.

- Watch Video Solution

6. Name the equipment using which heat of combustion of compounds are determined?

- Watch Video Solution

7. Energy can be created and be destroyed. State whether this is true or false.

- Watch Video Solution

8. State Zeroth law of thermodynamic .

- Watch Video Solution

9. Give the relation between ΔU and ΔH.

- Watch Video Solution

10. Define an adiabatic process.

- Watch Video Solution

11. Write the differences between an exothermic and an endothermic process.

- Watch Video Solution

12. What are intensive and extensive properties?.
13. Define first law of thermodynamics.

- Watch Video Solution

14. Explain thermal and mechanical equilibrium processes.

- Watch Video Solution

Questions D Explain Briefly On The Following

1. Describe a bomb calorimeter and explain how heat of formation of an organic compound is determined.

- Watch Video Solution

2. Compare the enthalpy changes that occur between the neutralisation of a strong acid and a weak acid by sodium hydroxide. Explain the

- Watch Video Solution

Questions Miscellaneous

1. Calculate the enthalpy of combustion of acetic (1) when burnt in excess
of O_{2} in a bomb calorimeter. Given that $\Delta H_{f}^{\circ}, H_{2} O_{(l)}=-285.84 \mathrm{KJ} \mathrm{mol}^{-1}$ and $\Delta_{f} H^{\circ}, C O_{2(g)}=-393.52 \mathrm{l}$

- Watch Video Solution

2. Heat of neutralisation of a strong acid is \qquad than that of a weak acid.
3. ΔH for the reaction at $298 \mathrm{~K} \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ is $282.85 \mathrm{KJmol}^{-1}$. Calculate ΔU of the reaction.

- Watch Video Solution

Question

1. From the following data at constant volume for combustion of benzene, calculate the heat of this reaction at constant pressure condition.

$$
\mathrm{C}_{6} \mathrm{H}_{6(1)}+71 / 2 \mathrm{O}_{2(g)} \rightarrow 6 \mathrm{CO}_{2(g)}+13 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

- Watch Video Solution

2. Calculate the enthalpy of combustion of ethylene at 300 K at constant pressure if its enthalpy of combustion at constant volume is $-1406 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
3. (a) The measured heats of neutralization of acetic acid, formic acid, hydrocyanic acid, and hydrogen sulphide are 13.20, 13.40, 2.90 and 3.80 KCal per g.equiv. respectively. Arrange these acids in a decreasing order of strength.
(b) Heat of neutralization of formic acid by $\mathrm{NH}_{4} \mathrm{OH}$ is 11.9 KCal per g.equiv. What is the heat of ionization of $\mathrm{NH}_{4} \mathrm{OH}$?

- View Text Solution

4. Which of the following is an exothermic reaction?
A. melting of ice
B. combustion reactions
C. hydrolysis
D. boiling of water

Answer:

- Watch Video Solution

5. Which of the following is reversible process?
A. Diffusion
B. melting
C. neutralization
D. combustion

Answer:

6. In which process, work is maximum?
A. reversible
B. irreversible
C. exothermic
D. cyclic

Answer:

- Watch Video Solution

7. Translational energy of molecules is a part of \qquad energy of the system.

- Watch Video Solution

8. Specific heat of a liquid system is \qquad property.

D Watch Video Solution

9. Work done in the reversible expansion is
10. Combustion is an process.

- Watch Video Solution

11. Heat of neutralisation of a strong acid is \qquad than that of a weak acid.

- Watch Video Solution

12. Name the equipment using which heat of combustion of compounds are determined?

- Watch Video Solution

13. Energy can be created and be destroyed. State whether this is true or false.
14. State Zeroth law of thermodynamic .

- Watch Video Solution

15. Give the relation between ΔU and ΔH.

- Watch Video Solution

16. Define an adiabatic process.

- Watch Video Solution

17. Write the differences between an exothermic and an endothermic process.
18. What are intensive and extensive properties?.

- Watch Video Solution

19. Define first law of thermodynamics.

Watch Video Solution

20. Explain thermal and mechanical equilibrium processes.

- Watch Video Solution

21. Describe a bomb calorimeter and explain how heat of formation of an organic compound is determined.

- Watch Video Solution

22. Compare the enthalpy changes that occur between the neutralisation of a strong acid and a weak acid by sodium hydroxide. Explain the differences seen.

- Watch Video Solution

23. Calculate the enthalpy of combustion of acetic (1) when burnt in excess of O_{2} in a bomb calorimeter. Given that $\Delta H_{f}^{\circ}, H_{2} O_{(l)}=-285.84 \mathrm{KJ} \mathrm{mol}^{-1}$ and $\Delta_{f} H^{\circ}, C O_{2(g)}=-393.52 \mathrm{l}$

- Watch Video Solution

24. Heat of neutralisation of a weak acid HA by $N a O H$ is $-12.13 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the enthalpy of ionization of HA.

- Watch Video Solution

25. ΔH for the reaction at $298 \mathrm{KCO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ is $282.85 \mathrm{KJmol}^{-1}$. Calculate ΔU of the reaction.

- Watch Video Solution

Problem

1. A gas contained in a cylinder fitted with a frictionless piston expands against a constant external pressure of 1 atm from a volume of 5 litres to a volume of 10 litres. In doing so it absorbs 400 J of thermal energy from its surroundings. Determine the change in internal energy of system.

- View Text Solution

2. The standard enthalpies of formation of
$\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{OH})(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$-277,-393.5$ and $-285.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.
Calculate the standard enthalpy change for the reaction

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

The enthalpy of formation of $O_{2}(g)$ in the standard state is Zero, by definition

- View Text Solution

3. Calculate the value of ΔU and ΔH on heating 128.0 g of oxygen from $0^{\circ} C$ to $100^{0} C . C_{V}$ and C_{P} on an average are 21 and $29 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$. (The difference is $8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ which is approximately equal to R)

- View Text Solution

4. Calculate the enthalpy of combustion of ethylene at 300 K at constant pressure, if its heat of combustion at constant volume (ΔU) is -1406 kJ .

- View Text Solution

5. If an automobile engine burns petrol at a temperature of $816^{\circ} \mathrm{C}$ and if the surrounding temperature is $21^{\circ} \mathrm{C}$, calculate its maximum possible efficiency.

- View Text Solution

6. Calculate the standard entropy change for the following reaction $\left(\Delta S_{f}^{0}\right)$, given the standard entropies of $\mathrm{CO}_{2}(g), C(s), O_{2}(g)$ as $213.6,5.740$ and $205 \mathrm{JK}^{-1}$ respectively.

- View Text Solution

7. Calculate the entropy change during the melting of one mole of ice into water at $0^{\circ} \mathrm{C}$ and 1 atm pressure. Enthalpy of fusion of ice is $6008 \mathrm{~J} \mathrm{~mol}^{-1}$

- View Text Solution

8. Show that the reaction $\mathrm{CO}+\left(\frac{1}{2}\right) \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ at 300 K is spontaneous. The standard Gibbs free energies of formation of CO_{2} and CO are -394.4 and -137.2 kJ mole ${ }^{-1}$ respectively.

- View Text Solution

9. Calculate ΔG^{0} for conversion of oxygen to ozone $3 / 2 O_{2} \Leftrightarrow O_{3(g)} \quad$ at 298 K , if K_{p} for this conversion is 2.47×10^{-29} in standard pressure units.

D View Text Solution

Evaluate Yourself

1. Calculate ΔH_{f}^{0} for the reaction $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ given that ΔH_{f}^{0} for $\mathrm{CO}_{2}(g), \mathrm{CO}(g)$ and $\mathrm{H}_{2} \mathrm{O}(g)$ are -393.5, -111.31 and $-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.
2. Calculate the amount of heat necessary to raise 180 g of water from $25^{0} \mathrm{C}$ to $100^{0} \mathrm{C}$. Molar heat capacity of water is $75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

- View Text Solution

3. From the following data at constant volume for combustion of benzene, calculate the heat of this reaction at constant pressure condition.
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+7 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta U \text { at } 25^{\circ} C=-3268.12 K J
$$

D View Text Solution

4. When a mole of magnesium bromide is prepared from 1 mole of magnesium and 1 mole of liquid bromine, 524 kJ of energy is released.

The heat of sublimation of Mg metal is $148 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The heat of dissociation of bromine gas into atoms is $193 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The heat of
vapourisation of liquid bromine is $31 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The ionisation energy of magnesium is $2187 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the electron affinity of bromine is $-662 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the lattice energy of magnesium bromide.

- View Text Solution

5. An engine operating between $127^{\circ} C$ and $47^{\circ} C$ takes some specified amount of heat from a high temperature reservoir. Assuming that there are no frictional losses, calculate the percentage efficiency of an engine.

- View Text Solution

6. Urea on hydrolysis produces ammonia and carbon dioxide. The standard entropies of urea, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{NH}_{3}$ are $173.8,70,213.5$ and $192.5 \mathrm{~J} \mathrm{~mole}^{-1} \mathrm{~K}^{-1}$ respectively. Calculate the entropy change for this reaction.

- View Text Solution

7. Calculate the entropy change when 1 mole of ethanol is evaporated at 351 K . The molar heat of vaporisation of ethanol is $39.84 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

8. For a chemical reaction the values of ΔH and ΔS at $300 K$ are $-10 \mathrm{~kJ} \mathrm{~mole}^{-1}$ and $-20 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~mole}^{-1}$ respectively. What is the value of ΔG of the reaction? Calculate the ΔG of a reaction at 600 K assuming ΔH and ΔS values are constant. Predict the nature of the reaction.

- View Text Solution

Evaluation Choose The Best Answer

1. The amount of heat exchanged with the surrounding at constant temperature and pressure is given by the quantity
A. ΔE
B. ΔH
C. ΔS
D. ΔG

Answer: B

- View Text Solution

2. All the naturally occurring processes proceed spontaneously in a direction which leads to
A. decrease in entropy
B. increase in enthalpy
C. increase in free energy
D. decrease in free energy
3. In an adiabatic process, which of the following is true?
A. $q=w$
B. $q=0$
C. $\Delta E=q$
D. $P \Delta V=0$

Answer: B

4. In a reversible process, the change in entropy of the universe is
A. >0
B. ≥ 0
C. <0
D. $d=0$

Answer: D

- View Text Solution

5. In an adiabatic expansion of an ideal gas
A. $w=-\Delta u$
B. $w=\Delta u+\Delta H$
C. $\Delta u=0$
D. $w=0$

Answer: A

- View Text Solution

6. The intensive property among the quantities below is
A. mass
B. volume
C. enthalpy
D. $\frac{\text { mass }}{\text { volume }}$

Answer: D

- View Text Solution

7. An ideal gas expands from the volume of $1 \times 10^{-3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure at $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is
A. -900 J
B. 900 kJ
C. 270 kJ
D. -900 kJ

- View Text Solution

8. Heat of combustion is always
A. positive
B. negative
C. zero
D. either positive or negative

Answer: B

- View Text Solution

9. The heat of formation of CO and CO_{2} are -26.4 kCal and -94 kCal , respectively. Heat of combustion of carbon monoxide will be
A. $+26.4 k c a l$
B. -67.6 kcal
C. -120.6 kcal
D. +52.8 kcal

Answer: B

- View Text Solution

10. C (diamond) $\rightarrow \mathrm{C}$ (graphite), $\Delta H=-v e$, this indicates that
A. graphite is more stable than diamond
B. graphite has more energy than diamond
C. both are equally stable
D. stability cannot be predicted

Answer: A

11. The enthalpies of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ are -1596 kJ and -1134 kJ , respectively.
$\Delta \mathrm{H}$ for the reaction $2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ is
A. -1365 kJ
B. 2730 kJ
C. -2730 kJ
D. $-462 k J$

Answer: D

- View Text Solution

12. Which of the following is not a thermodynamic function ?
A. internal energy
B. enthalpy
C. entropy
D. frictional energy

Answer: D

- View Text Solution

13. If one mole of ammonia and one mole of hydrogen chloride are mixed in a closed container to form ammonium chloride gas, then
A. $\Delta H>\Delta U$
B. $\Delta H-\Delta U=0$
C. $\Delta H+\Delta U=0$
D. $\Delta H<\Delta U$

Answer: D

- View Text Solution

14. Change in internal energy, when 4 kJ of work is done on the system and 1 kJ of heat is given out by the system is
A. $+1 k J$
B. $-5 k J$
C. $+3 k J$
D. $-3 k J$

Answer: C

- View Text Solution

15. The work done by the liberated gas when 55.85 g of iron (molar mass $55.85 \mathrm{~g} \mathrm{~mol}^{-1}$) reacts with hydrochloric acid in an open beaker at $25^{0} \mathrm{C}$
A. $-2.48 k J$
B. $-2.22 k J$
C. $+2.22 k J$
D. +2.48 kJ

Answer: A

- View Text Solution

16. The value of ΔH for cooling 2 moles of an ideal monatomic gas from $125^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ at constant pressure will be $\left[\right.$ given $\left.C_{P}=\frac{5}{2} R\right]$
A. $-250 R$
B. $-500 R$
C. 500 R
D. $+250 R$

Answer: B

$$
C(g)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \Delta H^{0}=-a k J, 2 \mathrm{CO}(g) \rightarrow 2 \mathrm{CO}_{2}(g) \Delta H^{0}=-
$$

Cal- culate the ΔH^{0} for the reaction $\mathrm{C}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
A. $\frac{b+2 a}{2}$
B. $2 a-b$
C. $\frac{2 a-b}{2}$
D. $\frac{b-2 a}{2}$

Answer: D

- View Text Solution

18. When 15.68 litres of a gas mixture of methane and propane are fully combusted at $0^{0} \mathrm{C}$ and 1 atmosphere, 32 litres of oxygen at the same temperature and pressure are consumed. The amount of heat of released from this combustion in kJ is $\left(\Delta H_{C}\left(C H_{4}\right)=-890 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$ and $\Delta H_{C}\left(C_{3} H_{8}\right)=-2220 \mathrm{~kJ} \mathrm{~mol}^{-1}$
A. $-889 k J$
B. $-1390 k J$
C. $-3180 k J$
D. $-653.66 k J$

Answer: D

- View Text Solution

19. The bond dissociation energy of methane and ethane are $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $620 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Then, the bond dissociation energy of C-C bond is
A. $170 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $220 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- View Text Solution

20. The correct thermodynamic conditions for the spontaneous reaction at all temperature is (NEET Phase-I)
A. $\Delta H<0$ and $\Delta S>0$
B. $\Delta H<0$ and $\Delta S<0$
C. $\Delta H>0$ and $\Delta S=0$
D. $\Delta H>0$ and $\Delta S>0$

Answer: A

- View Text Solution

21. The temperature of the system, decreases in an
A. Isothermal expansion
B. Isothermal Compression
C. adiabatic expansion
D. adiabatic compression

Answer: C

- View Text Solution

22. In an isothermal reversible compression of an ideal gas the sign of $q, \Delta S$ and w are respectively
A.,,+--
B.,,-+-
C.,,+-+
D.,,--+
23. Molar heat of vapourisation of a liquid is $4.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the entropy change is $16 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, the boiling point of the liquid is
A. 323 K
B. $27^{0} \mathrm{C}$
C. 164 K
D. 0.3 K

Answer: B

- View Text Solution

24. ΔS is expected to be maximum for the reaction
A. $\mathrm{Ca}(\mathrm{S})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CaO}(S)$
B. $C(S)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
D. $\mathrm{CaCO}_{3}(\mathrm{~S}) \rightarrow \mathrm{CaO}(\mathrm{S})+\mathrm{CO}_{2}(\mathrm{~g})$

Answer: D

- View Text Solution

25. The values of ΔH and ΔS for a reaction are respectively $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $100 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Then the temperature above which the reaction will become spontaneous is
A. 300 K
B. 30 K
C. 100 K
D. $20^{\circ} \mathrm{C}$

Answer: A

Evaluation

1. Calculate the work done when 2 moles of an ideal gas expands reversibly and isothermally from a volume of 500 ml to a volume of 2 L at $25^{\circ} \mathrm{C}$ and normal pressure.

- View Text Solution

2. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298 K . The temperature of the calorimeter was found to increase from 298 K to 298.45 K due to the combustion process. Given that the calorimeter constant is $2.5 \mathrm{kJK}^{-1}$. Calculate the enthalpy of combustion of the gas in $k J \mathrm{~mol}^{-1}$.

- View Text Solution

3. Calculate the entropy change in the system, and surroundings, and the total entropy change in the universe during a process in which 245 J of heat flow out of the system at $77^{\circ} \mathrm{C}$ to the surrounding at $33^{\circ} \mathrm{C}$.

- View Text Solution

4. 1 mole of an ideal gas, maintained at 4.1 atm and at a certain temperature, absorbs heat 3710 J and expands to 2 litres. Calculate the entropy change in expansion process.

- View Text Solution

5. 30.4 kJ is required to melt one mole of sodium chloride. The entropy change during melting is $28.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate the melting point of sodium chloride.

- View Text Solution

6. Calculate the standard heat of formation of propane, if its heat of combustion is $-2220.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. the heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -393.5 and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- View Text Solution

7. You are given normal boiling points and standard enthalpies of vapourisation. Calculate the entropy of vapourisation of liquids listed below.

S. No	Liquid	Boiling points ($\left.{ }^{0} \mathrm{C}\right)$	$\Delta \mathbf{H}(\mathbf{k J}$ $\left.\mathrm{mol}^{-1}\right)$
1.	Ethanol	78.4	+42.4
2.	Toluene	110.6	+35.2

- View Text Solution

8.

$A g_{2} O(S) \rightarrow 2 A g(s)+\frac{1}{2} O_{2}(g): \Delta H=30.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=6.66 \mathrm{~J}$ (at 1 atm). Calculate the temperature at which ΔG is equal to zero. Also predict the direction of the reaction (i) at this temperature and (ii) below this temperature.

- View Text Solution

9. What is the equilibrium constant Keq for the following reaction at 400K
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$, given that $\Delta H^{0}=77.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $\Delta S^{0}=122 J K^{-1} \mathrm{~mol}^{-1}$.

D View Text Solution

10. Cyanamide $\left(\mathrm{NH}_{2} \mathrm{CN}\right)$ is completely burnt in excess oxygen in a bomb calorimeter, ΔU was found to be $-742.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the

- View Text Solution

11. Calculate the enthalpy of hydrogenation of ethylene from the following data. Bond energies of $\mathrm{C}-H, C-C, C=C$ and $H-H$ are 414, 347, 618 and $435 k J m o l-1$.

D View Text Solution

12. Calculate the lattice energy of CaCl_{2} from the given data
$C a(s)+C l_{2}(g) \rightarrow C a C l_{2}(s) \Delta H_{f}^{0}=-795 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Atomisation : $\mathrm{Ca}(\mathrm{s}) \rightarrow \mathrm{Ca}(\mathrm{g})$
Ionisation $\quad: \mathrm{Ca}(\mathrm{g}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+2 e^{-}$
Dissociation : $\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(\mathrm{g})$
Electron affinity : $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(g) \quad \Delta H_{4}^{0}=-355 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

13. Calculate the enthalpy change for the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ from the following data.
$2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \rightarrow f e_{2} \mathrm{O}_{3}, \Delta H=-741 \mathrm{~kJ}$
$C+\frac{1}{2} O_{2} \rightarrow C O, \Delta H=-137 k J$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-394.5 \mathrm{~kJ}$

- View Text Solution

14. When 1-pentyne (A) is treated with 4 N alcoholic KOH at $175^{\circ} \mathrm{C}$, it is converted slowly into an equilibrium mixture of 1.3\% 1-pentyne(A) , 95.2% 2-pentyne(B) and 3.5% of 1,2 pentadiene (C) the equilibrium was maintained at $175^{\circ} \mathrm{C}$, calculate ΔG_{0} for the following equilibria.

$$
\begin{array}{ll}
B \Leftrightarrow A & \Delta G_{1}^{0}=? \\
B \Leftrightarrow C & \Delta G_{2}^{0}=?
\end{array}
$$

- View Text Solution

15. At $33 \mathrm{~K}, \mathrm{~N}_{2} \mathrm{O}_{4}$ is fifty percent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere.
16. The standard enthalpies of formation of SO_{2} and SO_{3} are $-297 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-396 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the standard enthalpy of reaction for the reaction: $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$

- View Text Solution

17. For the reaction at $298 \mathrm{~K}: 2 A+B \rightarrow C$
$\Delta H=400 \mathrm{~J} \mathrm{~mol}^{-1}, \Delta S=0.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad$ Determine the temperature at which the reaction would be spontaneous.

- View Text Solution

18. Find out the value of equilibrium constant for the following reaction at $298 \mathrm{~K}, 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Standard Gibbs energy change, ΔG_{r}^{0} at the given temperature is $-13.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
19. A gas mixture of 3.67 lit of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ and at 1 atm pressure produce 6.11 lit of carbondioxide. Find out the amount of heat evolved in kJ , during this combustion.
$\left(\Delta H_{C}\left(C H_{4}\right)=-890 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$ and $\left(\Delta H_{C}\left(C_{2} H_{4}\right)=-1423 \mathrm{~kJ} \mathrm{~mol}\right.$

- View Text Solution

