©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHEMATICS(TAMIL)

BINOMIAL THEOREM , SEQUENCES AND SERIES

Example

1. Find the expansion of $(2 x+3)^{5}$.

- View Text Solution

2. Evaluate 98^{4}.
3. Find the middle term in the expansion of $(x+y)^{6}$.

- View Text Solution

4. Find the middle terms in the expansion of $(x+y)^{7}$.

- View Text Solution

5. Find the coefficient of x 6 in the expansion of $(3+2 x)^{10}$.

- View Text Solution

6. Find the coefficient of $x 3$ in the expansion of $(2-3 x)^{7}$.

- View Text Solution

7. The $2^{N d}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the binomial expansion of $(x+a)^{n}$ are 240,720 and 1080 for a suitable value of x . Find x , a and n .

- View Text Solution

8. Expand $\left(2 x-\frac{1}{2 x}\right)^{4}$.

- View Text Solution

9. Expand $\left(x^{2}+\sqrt{1-x^{2}}\right)^{5}+\left(x^{2}-\sqrt{1-x^{2}}\right)^{5}$.

- View Text Solution

10. Using Binomial theorem ,prove that $6^{n}-5 n$ always leaves remainder 1 when divided by 25 for all positive integer n .

- View Text Solution

11. If the $5^{\text {th }}$ and $9^{t h}$ terms of a harmonic progression are $\frac{1}{19}$ and $\frac{1}{35}$,find the $12^{\text {th }}$ term of the squence.

- View Text Solution

12. If the product of the $4^{\text {th }}, 5^{\text {th }}$ and $6^{T h}$ terms of a geometric progression is 4096 and if the product of the $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms of it is 32768 ,find the sum of first 8 terms of the geometric progression.

- View Text Solution

13. Find the sum up to n terms of the series : $1+\frac{6}{7}+\frac{11}{49}+\frac{16}{343}+\ldots$.

- View Text Solution

14. Find the sum of the first n terms of the series $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots$
15. Find $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

- View Text Solution

16. Find the sum : $1+\frac{4}{5}+\frac{7}{25}+\frac{10}{125}+\ldots$.

- View Text Solution

17. Find $\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}$.

- View Text Solution

18. Expand $\frac{1}{(3+2 x)^{2}}$ in powers of x . Find a condition on x for which the expansion is valid.
19. Find $\sqrt[3]{65}$.

View Text Solution
20. Prove that $\sqrt[3]{x^{3}+7}-\sqrt[3]{x^{3}+4}$ is approximately equal to $\frac{1}{x^{2}}$ when x is large.

- View Text Solution

Exercise 51

1. Expand
$\left(2 x^{2}-\frac{3}{x}\right)^{3}$

View Text Solution
2. Expand

$$
\left(2 x^{2}-3 \sqrt{1-x^{2}}\right)^{4}+\left(2 x^{2}+3 \sqrt{1-x^{2}}\right)^{4}
$$

D View Text Solution

3. Compute

 102^{4}
4. Compute 99^{4}

D View Text Solution
5. Compute
9^{7}.
6. Using binomial theorem, indicate which of the following two number is larger . (1.01 $)^{1000000}, 10000$.

- View Text Solution

7. Find the coefficient of x^{15} in $\left(x^{2}+\frac{1}{x^{3}}\right)^{10}$.

D View Text Solution

8. Find the coefficient of x^{6} and the cofficient of x^{2} in $\left(x^{2}-\frac{1}{x^{3}}\right)^{6}$.

- View Text Solution

9. Find the coefficient of x^{6} and the expansion of $\left(1+x^{3}\right)^{50}\left(x^{2}+\frac{1}{x}\right)^{5}$.
10. Find the constant term of $\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$.

- View Text Solution

11. Find the last two digits of the number 3^{600}.

- View Text Solution

12. In the binomial expansion of $(a+b)^{n}$,the coefficients of the $4^{\text {th }}$ and $13^{\text {th }}$ terms are equal to each other, find n.

- View Text Solution

13. If the binomial coefficients of three consecutive terms in the expansion of $(a+x)^{n}$ are in the ratio 1:7:42, then find n .
14. In the binomial coefficients of $(1+x)^{n}$, the coefficients of the $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms are in AP. Find all values of n .

- View Text Solution

Exercise 52

1. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them.
$\frac{1}{2^{n+1}}$

- View Text Solution

2. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them.

$$
\frac{(n+1)(n+2)}{n+3(n+4)}
$$

- View Text Solution

3. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them.
$4\left(\frac{1}{2}\right)^{n}$
4. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them

$(-1)^{n}$ n

- View Text Solution

5. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them

$$
\frac{2 n+3}{3 n+4}
$$

- View Text Solution

6. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric
progression, arithmetico-geometric progression, harmonic progression and none of them

2018

- View Text Solution

7. Write the first 6 terms of the sequences whose $n^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them
$3 n-2$
$\overline{3 n-1}$

- View Text Solution

8. Write the first 6 terms of the sequences whose $n^{\text {th }}$ term a_{n} is given below.
$a_{n}= \begin{cases}n+1 & \text { if } \mathrm{n} \text { is odd } \\ n & \text { if } \mathrm{n} \text { is even }\end{cases}$
9. Write the first 6 terms of the sequences whose $n^{t h}$ term a_{n} is given below.
$a_{n}= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ 2 & \text { if } \mathrm{n}=2 \\ a_{n-1}+a_{n-2} & \text { if } n>2\end{cases}$

D View Text Solution

10. Write the first 6 terms of the sequences whose $n^{t h}$ term a_{n} is given below.
$a_{n}=\left\{\begin{array}{lc}n & \text { if } \mathrm{n} \text { is } 1,2 \mathrm{or} 3 \\ a_{n-1}+a_{n-2}+a_{n-3} & \text { if } n>3\end{array}\right.$

- View Text Solution

11. Write the $n^{\text {th }}$ term of the following sequences.
$2,2,4,4,6,6, \ldots$
12. Write the $n^{\text {th }}$ term of the following sequences.
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots$

- View Text Solution

13. Write the $n^{\text {th }}$ term of the following sequences.
$\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{9}{10}, \ldots$

- View Text Solution

14. Write the $n^{\text {th }}$ term of the following sequences.
$6,10,4,12,2,14,0,16,-2, \ldots$

- View Text Solution

15. The product of three in creasing number \sin GP is 5832 .Ifwe add 6 to the second number and 9 to the third number, then resulting numbers
form an AP. Find the numbers in GP.

- View Text Solution

16. Write the $n^{\text {th }}$ term of the sequence $\frac{3}{1^{2} 2^{2}}, \frac{5}{2^{2} 3^{2}}, \frac{7}{3^{2} 4^{2}}, \ldots$ as a difference of two terms.

- View Text Solution

17. The $A M$ of two numbers exceeds their GM by 10 and $H M$ by 16 . Find the numbers.

- View Text Solution

Exercise 53

1. Find the sum of the first 20 -terms of the arithmetic progression having the sum of first 10 terms as 52 and the sum of the first 15 terms as 77 .
2. Find the sum up to the $17^{\text {th }}$ term of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$

- View Text Solution

3. Compute the sum of first n terms of the following series:
$8+88+888+8888+\ldots$

- View Text Solution

4. Compute the sum of first n terms of the following series:
$6+66+666+6666+\ldots$

- View Text Solution

5. Compute the sum of first n terms of $1+(1+4)+\left(1+4+4^{2}\right)+\left(1+4+4^{2}+4^{3}\right)+\ldots$

- View Text Solution

6. Find the general term and sum to n terms of the sequence $1, \frac{4}{3}, \frac{7}{9}, \frac{10}{27}, \ldots$.

- View Text Solution

7. Find the value of n, if the sum to n terms of the series $\sqrt{3}+\sqrt{75}+\sqrt{243}+\ldots$ is $432 \sqrt{3}$.

D View Text Solution

8. A man repays an amount of Rs. 3250 by paying Rs. 20 in the first month and then increases the payment by Rs. 15 per month. How long will it take
him to clear the amount?

- View Text Solution

9. In a race, 20 balls are placed in a line at intervals of 4 meters, with the first ball 24 meters away from the starting point. A contestant is required to bring the balls back to the starting place one at a time. How far would the contestant run to bring back all balls?

- View Text Solution

10.

Thenumberofbacteriainacertainculturedoubleseveryhour.Iftherewere30bacter the culture originally, how many bacteria will be present at the end of 2nd hour, 4th hour and nth hour?
11.

WhatwillRs.500amountstoin10yearsafteritsdepositinabankwhichpaysannualin of 10% compounded annually?

- View Text Solution

12. In a certain town, a viral disease caused severe health hazards upon its people disturbing their normal life. Itwas foundthat on each day, thevirus whichcausedthe disease spreadin Geometric Progression. The amount of infectious virus particle gets doubled each day, being 5 particles on the first day. Find the day when the infectious virus particles just grow over 1,50,000 units?

- View Text Solution

1. Expandthefollowinginascendingpowersof x andfindtheconditionon x forwhichthebinomial expansion is valid.
$\frac{1}{5+x}$

- View Text Solution

2. Expandthefollowinginascendingpowersof x andfindtheconditionon x forwhichthebinomial expansion is valid.
$\frac{2}{(3+4 x)^{2}}$

- View Text Solution

3. Expandthefollowinginascendingpowersof x andfindtheconditionon x forwhichthebinomial expansion is valid.

$$
\left(5+x^{2}\right)^{\frac{2}{3}}
$$

4. Expandthefollowinginascendingpowersof x andfindtheconditionon x forwhichthebinomial expansion is valid.
$(x+2)^{-\frac{2}{3}}$

- View Text Solution

5. Find $\sqrt[3]{1001}$ approximately (two decimal places).

- View Text Solution

6. Write the first 6 terms of the exponential series $e^{5 x}$

- View Text Solution

7. Write the first 6 terms of the exponential series
$e^{-2 x}$
8. Write the first 6 terms of the exponential series $e^{\frac{1}{2} x}$

D View Text Solution

9. Write the first 4 terms of the logarithmic series
$\log (1+4 x)$ Find the intervals on which the expansions are valid.

- View Text Solution

10. Write the first 4 terms of the logarithmic series
$\log (1-2 x)$ Find the intervals on which the expansions are valid.

D View Text Solution

11. Write the first 4 terms of the logarithmic series
$\log \left(\frac{1+3 x}{1-3 x}\right)$ Find the intervals on which the expansions are valid.

D View Text Solution

12. Write the first 4 terms of the logarithmic series
$\log \left(\frac{1-2 x}{1+2 x}\right)$.Find the intervals on which the expansions are valid.

- View Text Solution

13. If $p-q$ is small compared to either p or q, the show that $\sqrt[n]{\frac{p}{q}} \cong \frac{(n+1) p+(n-1) q}{(n-1) p+(n+1) q}$.Hence find $\sqrt[8]{\frac{15}{16}}$.

- View Text Solution

14. Find the coefficient of x^{4} in the expansion of $\frac{3-4 x+x^{2}}{e^{2 x}}$
15. Find the value of $\sum_{n=1}^{\infty} \frac{1}{2 n-1}\left(\frac{1}{9^{n-1}}+\frac{1}{9^{2 n-1}}\right)$.

- View Text Solution

Exercise 55

1. Choose the correct or the most suitable answer.

The value of $2+4+6+\cdots+2 n$ is
A. $\frac{n(n-1)}{2}$
B. $\frac{n(n+1)}{2}$
C. $\frac{2 n(2 n+1)}{2}$
D. $n(n+1)$

Answer: D

2. The coefficient of x^{6} in $(2+2 x)^{10}$ is
A. ${ }^{10} C_{6}$
B. 2^{6}
C. ${ }^{10} C_{6} 2^{6}$
D. ${ }^{10} C_{6} 2^{10}$.

Answer: D

- View Text Solution

3. The coefficient of $x^{8} y^{12}$ in the expansion of $(2 x+3 y)^{20}$ is
A. 0
B. $2^{8} 3^{12}$
C. $2^{8} 3^{12}+2^{12} 3^{8}$
D. ${ }^{20} C_{8} 2^{8} 3^{12}$.

Answer: D

D View Text Solution

4. If ${ }^{n} C_{10}>{ }^{n} C_{r}$ for all possible r, then a value of n is
A. 10
B. 21
C. 19
D. 20

Answer: D

- View Text Solution

5. If a is the arithmetic mean and g is the geometric mean of two numbers, then
A. $a \leq g$
B. $a \geq g$
C. $a=g$
D. $a>g$.

Answer: B

- View Text Solution

6. If $\left(1+x^{2}\right)^{2}(1+x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+x^{n+4}$ and if a_{0}, a_{1}, a_{2} are in AP, then n is
A. 1
B. 2
C. 3
D. 4
7. If $a, 8, b$ are in $A P, a, 4 b$ are in GP , and if a, x, b are in HP then x is
A. 2
B. 1
C. 4
D. 16

Answer: A

- View Text Solution

8. The sequence $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}+\sqrt{2}}, \frac{1}{\sqrt{3}+2 \sqrt{2}}, \ldots$. form an
A. AP
B. GP
C. HP
D. AGP.

Answer: C

- View Text Solution

9. The HM of two positive numbers whose AM and GM are 16,8 respectively is
A. 10
B. 6
C. 5
D. 4

Answer: D

View Text Solution
10. If S_{n} denotes the sum of n terms of an AP whose common difference is d,the value of $S_{n}-2 S_{n-1}+S_{n-2}$ is
A. 0
B. 2 d
C. 4 d
D. d^{2}.

Answer: A

- View Text Solution

11. The remainder when 38^{15} is divided by 13 is
A. 12
B. 1
C. 11
D. 5

D View Text Solution

12. The $n^{\text {th }}$ term of the sequence $1,2,4,7,11, \ldots$ is
A. $n^{3}+3 n^{2}+2 n$
B. $n^{3}-3 n^{2}+3 n$
C. $\frac{n(n+1)(n+2)}{3}$
D. $\frac{n^{2}-n+2}{2}$

Answer: D

- View Text Solution

13. The sum up to n terms of the series
$\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\ldots$ is
A. $\sqrt{2 n+1}$
B. $\frac{\sqrt{2 n+1}}{2}$
C. $\sqrt{2 n+1}-1$
D. $\frac{\sqrt{2 n+1}-1}{2}$

Answer: D

- View Text Solution

14. The $n^{\text {th }}$ term of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \ldots$ is
A. $2^{n}-n-1$
B. $1-2^{-n}$
C. $2^{-n}+n-1$
D. 2^{n-1}

Answer: B

15. The sum up to n terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots$ is
A. $\frac{n(n+1)}{2}$
B. $2 n(n+1)$
C. $\frac{n(n+1)}{2}$
D. 1

Answer: C

- View Text Solution

16. The value of the series $\frac{1}{2}+\frac{7}{4}+\frac{13}{8}+\frac{19}{16}+\ldots$. is
A. 14
B. 7
C. 4
D. 6

Answer: B

- View Text Solution

17. The sum of an infinite GP is 18 . If the first term is 6 , the common ratio is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. $\frac{3}{4}$.

Answer: B

D View Text Solution

18. The coefficient of x^{5} in the series $e^{-2 x}$ is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{-4}{15}$
D. $\frac{4}{15}$.

Answer: C

- View Text Solution

19. The value of $\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+. .$. is
A. $\frac{e^{2}+1}{2 e}$
B. $\frac{(e+1)^{2}}{2 e}$
C. $\frac{(e-1)^{2}}{2 e}$
D. $\frac{e^{2}+1}{2 e}$

Answer: C

20. The value of $1-\frac{1}{2}\left(\frac{2}{3}\right)+\frac{1}{3}\left(\frac{2}{3}\right)^{2}-\frac{1}{4}\left(\frac{2}{3}\right)^{3}+\ldots$ is
A. $\log \left(\frac{5}{3}\right)$
B. $\frac{3}{2} \log \left(\frac{5}{3}\right)$
C. $\frac{5}{3} \log \left(\frac{5}{3}\right)$
D. $\frac{2}{3} \log \left(\frac{2}{3}\right)$.

Answer: B

- View Text Solution

